找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Invariant Theory for Polarized Curves; Gilberto Bini,Fabio Felici,Filippo Viviani Book 2014 Springer International Publishing Sw

[复制链接]
楼主: 闪烁
发表于 2025-3-23 10:24:52 | 显示全部楼层
Daily Routines and Sources of Income,The aim of this chapter is to collect the definitions and basic properties of the curves that we will deal with throughout the manuscript.
发表于 2025-3-23 17:52:28 | 显示全部楼层
Hallucinogens and Related Drugs,The aim of this chapter is to collect all the combinatorial results that will be used in the sequel.
发表于 2025-3-23 20:24:44 | 显示全部楼层
Xanthines (Caffeine) and Nicotine,In this chapter we review some basic material on Geometric Invariant Theory.
发表于 2025-3-24 01:35:11 | 显示全部楼层
Central Nervous System (CNS) Depressants,The aim of this chapter is to generalize the Potential stability theorem (see Fact 4.22) for smaller values of .. The main result is the following theorem, which we call Potential pseudo-stability Theorem because of its relations with the pseudo-stable curves (see Definition .(ii)).
发表于 2025-3-24 02:46:49 | 显示全部楼层
https://doi.org/10.1007/978-1-4684-1176-8Let . be a Chow semistable point of Hilb. with . connected and . > 2(2. − 2). Note that . is a quasi-wp-stable curve by Corollary .(i), . is balanced and . is non-degenerate and linearly normal in ∖.. by the Potential pseudo-stability Theorem ..
发表于 2025-3-24 07:28:53 | 显示全部楼层
发表于 2025-3-24 13:18:13 | 显示全部楼层
发表于 2025-3-24 17:09:22 | 显示全部楼层
发表于 2025-3-24 21:00:28 | 显示全部楼层
Medical Affairs and Professional Services,The aim of this chapter is to describe the points of Hilb. that are Hilbert or Chow semistable, polystable and stable for . The range . will be investigated later.
发表于 2025-3-25 02:24:14 | 显示全部楼层
https://doi.org/10.1007/978-3-319-57696-1In this chapter, we will use the criterion of stability for tails (Proposition .) in order to study the stability of elliptic curves for .. We notice that in this range—by the basic inequality (.)—it suffices to consider the elliptic curves of degree 4.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-21 16:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表