找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Integrators for Differential Equations with Highly Oscillatory Solutions; Xinyuan Wu,Bin Wang Book 2021 The Editor(s) (if applic

[复制链接]
楼主: FARCE
发表于 2025-3-25 07:08:20 | 显示全部楼层
发表于 2025-3-25 10:40:04 | 显示全部楼层
发表于 2025-3-25 13:17:22 | 显示全部楼层
A. Karlin,D. A. Cowburn,M. J. ReiterThis chapter presents a class of energy-preserving integrators for Poisson systems based on the functionally-fitted strategy, and these energy-preserving integrators can have arbitrarily high order. This approach permits us to obtain the energy-preserving methods proposed by Cohen and Hairer and Brugnano et al. for Poisson systems.
发表于 2025-3-25 17:21:05 | 显示全部楼层
发表于 2025-3-25 20:54:31 | 显示全部楼层
发表于 2025-3-26 02:54:22 | 显示全部楼层
Role of Decomposition on Drug Stability,Incorporating the operator-variation-of-constants formula for high-dimensional nonlinear wave equations with Fast Fourier Transform techniques in this chapter, we present a class of semi-analytical ERKN integrators, which can nearly preserve the spatial continuity as well as the oscillations of the underlying nonlinear waves equations.
发表于 2025-3-26 04:41:58 | 显示全部楼层
发表于 2025-3-26 11:31:28 | 显示全部楼层
Functionally-Fitted Energy-Preserving Integrators for Poisson Systems,This chapter presents a class of energy-preserving integrators for Poisson systems based on the functionally-fitted strategy, and these energy-preserving integrators can have arbitrarily high order. This approach permits us to obtain the energy-preserving methods proposed by Cohen and Hairer and Brugnano et al. for Poisson systems.
发表于 2025-3-26 16:08:22 | 显示全部楼层
Global Error Bounds of One-Stage Explicit ERKN Integrators for SemilinearWave Equations,In this chapter, we analyse global error bounds for one-stage explicit extended Runge–Kutta–Nyström integrators for semilinear wave equations with periodic boundary conditions. We show optimal second-order convergence without requiring Lipschitz continuity and higher regularity of the exact solution.
发表于 2025-3-26 19:10:03 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 01:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表