找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Inequalities; Methods of Proving Hayk Sedrakyan,Nairi Sedrakyan Textbook 2017 Springer International Publishing AG 2017 Geometric

[复制链接]
查看: 21563|回复: 41
发表于 2025-3-21 19:29:52 | 显示全部楼层 |阅读模式
书目名称Geometric Inequalities
副标题Methods of Proving
编辑Hayk Sedrakyan,Nairi Sedrakyan
视频video
概述Contains more than 1,000 problems.Provides an easy-to-understand approach to train for mathematic olympiads.Promotes creativity for solving math problems while learning new approaches.Includes classic
丛书名称Problem Books in Mathematics
图书封面Titlebook: Geometric Inequalities; Methods of Proving Hayk Sedrakyan,Nairi Sedrakyan Textbook 2017 Springer International Publishing AG 2017 Geometric
描述.This unique collection of new and classical problems provides full coverage of geometric inequalities. Many of the 1,000 exercises are presented with detailed author-prepared-solutions, developing creativity and an arsenal of new approaches for solving mathematical problems. This book can serve teachers, high-school students, and mathematical competitors. It may also be used as supplemental reading, providing readers with new and classical methods for proving geometric inequalities. .
出版日期Textbook 2017
关键词Geometric Inequalities; Mathematical Olympiad Problems; Inequality Problems and Solutions; Method of Pr
版次1
doihttps://doi.org/10.1007/978-3-319-55080-0
isbn_softcover978-3-319-85561-5
isbn_ebook978-3-319-55080-0Series ISSN 0941-3502 Series E-ISSN 2197-8506
issn_series 0941-3502
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Geometric Inequalities影响因子(影响力)




书目名称Geometric Inequalities影响因子(影响力)学科排名




书目名称Geometric Inequalities网络公开度




书目名称Geometric Inequalities网络公开度学科排名




书目名称Geometric Inequalities被引频次




书目名称Geometric Inequalities被引频次学科排名




书目名称Geometric Inequalities年度引用




书目名称Geometric Inequalities年度引用学科排名




书目名称Geometric Inequalities读者反馈




书目名称Geometric Inequalities读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:29:04 | 显示全部楼层
发表于 2025-3-22 01:25:54 | 显示全部楼层
Textbook 2017 detailed author-prepared-solutions, developing creativity and an arsenal of new approaches for solving mathematical problems. This book can serve teachers, high-school students, and mathematical competitors. It may also be used as supplemental reading, providing readers with new and classical metho
发表于 2025-3-22 06:08:56 | 显示全部楼层
https://doi.org/10.1007/978-3-030-73317-9This chapter consists of two sections. Section 1.1 is devoted to the applications of one of the most important geometric inequalities, called the ..
发表于 2025-3-22 12:13:32 | 显示全部楼层
发表于 2025-3-22 16:57:18 | 显示全部楼层
发表于 2025-3-22 17:53:25 | 显示全部楼层
https://doi.org/10.1007/978-3-642-28175-4This chapter is devoted to the application of vectors for proving geometric (or trigonometric) inequalities and consists of only one section, that is, Section 4.1.
发表于 2025-3-22 22:36:06 | 显示全部楼层
发表于 2025-3-23 02:45:11 | 显示全部楼层
Amanda F. Baker,Tomislav DragovichThis chapter consists of Sections 6.1 and 6.2. In Section 6.1, selected problems related to the inequalities with radiuses of circles are provided. Perhaps, the most well known among them is the following one. Prove that . ≥ 2., where . and . are the circumradius and inradius of triangle ., respectively.
发表于 2025-3-23 08:32:52 | 显示全部楼层
Drug Dosage in Renal InsufficiencyIn this chapter we consider problems that can be proved either by the methods described in the previous chapters or by some other methods introduced in this chapter. For example, complex numbers, the method of coordinates and application of geometric transformations are used in order to prove some inequalities.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 01:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表