找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Harmonic Analysis II; Function Spaces Meas Dorina Mitrea,Irina Mitrea,Marius Mitrea Book 2022 The Editor(s) (if applicable) and T

[复制链接]
查看: 52094|回复: 44
发表于 2025-3-21 20:02:58 | 显示全部楼层 |阅读模式
书目名称Geometric Harmonic Analysis II
副标题Function Spaces Meas
编辑Dorina Mitrea,Irina Mitrea,Marius Mitrea
视频video
概述Provides a systematics treatment of principal scales of function spaces in analysis.Builds a solid platform facilitating applications to singular integrals and boundary value problems.Methodically hig
丛书名称Developments in Mathematics
图书封面Titlebook: Geometric Harmonic Analysis II; Function Spaces Meas Dorina Mitrea,Irina Mitrea,Marius Mitrea Book 2022 The Editor(s) (if applicable) and T
描述.This monograph is part of a larger program, materializing in five volumes, whose principal aim is to develop tools in Real and Harmonic Analysis, of geometric measure theoretic flavor, capable of treating a broad spectrum of boundary value problems formulated in rather general geometric and analytic settings..Volume II is concerned with function spaces measuring size and/or smoothness, such as Hardy spaces, Besov spaces, Triebel-Lizorkin spaces, Sobolev spaces, Morrey spaces, Morrey-Campanato spaces, spaces of functions of Bounded Mean Oscillations, etc., in general geometric settings. Work here also highlights the close interplay between differentiability properties of functions and singular integral operators. The text is intended for researchers, graduate students, and industry professionals interested in harmonic analysis, functional analysis, geometric measure theory, and function space theory..
出版日期Book 2022
关键词Divergence theorem; integration by parts; Stokes theorem; singular integral operators; function spaces; b
版次1
doihttps://doi.org/10.1007/978-3-031-13718-1
isbn_softcover978-3-031-13720-4
isbn_ebook978-3-031-13718-1Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Geometric Harmonic Analysis II影响因子(影响力)




书目名称Geometric Harmonic Analysis II影响因子(影响力)学科排名




书目名称Geometric Harmonic Analysis II网络公开度




书目名称Geometric Harmonic Analysis II网络公开度学科排名




书目名称Geometric Harmonic Analysis II被引频次




书目名称Geometric Harmonic Analysis II被引频次学科排名




书目名称Geometric Harmonic Analysis II年度引用




书目名称Geometric Harmonic Analysis II年度引用学科排名




书目名称Geometric Harmonic Analysis II读者反馈




书目名称Geometric Harmonic Analysis II读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:46:34 | 显示全部楼层
发表于 2025-3-22 02:30:45 | 显示全部楼层
Hardy Spaces on Ahlfors Regular Sets,he usefulness and versatility of a brand of Hardy spaces which places minimal regularity and structural demands on the underlying space. Here we are concerned with Hardy spaces on Ahlfors regular subsets of the Euclidean ambient and, by further building on the work in [9], consider topics such as th
发表于 2025-3-22 05:46:17 | 显示全部楼层
发表于 2025-3-22 09:16:01 | 显示全部楼层
Morrey-Campanato Spaces, Morrey Spaces, and Their Pre-Duals on Ahlfors Regular Sets,ces (cf., e.g., [2], [6], [63], [117], [155], [157], [184] and the references therein). The goal here is to develop a theory for these scales of spaces, which is comparable in scope and power to its Euclidean counterpart, in more general geometric settings. To set the stage, throughout we let . (whe
发表于 2025-3-22 15:24:24 | 显示全部楼层
Besov and Triebel-Lizorkin Spaces on Ahlfors Regular Sets,Euclidean setting. Here we are concerned with adaptations of these scales of spaces to more general ambients, which only enjoy but a small fraction of the structural richness of the Euclidean space. This is in line with efforts made in the direction of extending the standard theory of Besov and Trie
发表于 2025-3-22 20:46:48 | 显示全部楼层
Boundary Traces from Weighted Sobolev Spaces into Besov Spaces,Next, in §., we consider traces from weighted Sobolev spaces defined in a given .-domain . by relying on P. Jones’ extension theorem to reduce matters to the full Euclidean setting considered earlier. The next order of business is to construct extension operators from boundary Besov spaces into our
发表于 2025-3-22 22:47:07 | 显示全部楼层
发表于 2025-3-23 02:28:28 | 显示全部楼层
Sobolev Spaces on the Geometric Measure Theoretic Boundary of Sets of Locally Finite Perimeter,ein), here the goal is to introduce a scale of Sobolev spaces on the geometric measure theoretic boundaries of sets of locally finite perimeter in the Euclidean setting and on Riemannian manifolds. This builds and expands on the work in [97], [139], and [141]. Our brand of “boundary” Sobolev spaces
发表于 2025-3-23 05:37:37 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 16:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表