找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Group Theory; An Introduction Clara Löh Textbook 2017 Springer International Publishing AG 2017 MSC 2010 20F65 20F67 20F69 20F05

[复制链接]
查看: 41727|回复: 46
发表于 2025-3-21 16:19:31 | 显示全部楼层 |阅读模式
书目名称Geometric Group Theory
副标题An Introduction
编辑Clara Löh
视频video
概述Features more than 250 exercises of varying difficulty including programming tasks.Introduces the key notions from quasi-geometry, such as growth, hyperbolicity, boundary constructions and amenability
丛书名称Universitext
图书封面Titlebook: Geometric Group Theory; An Introduction Clara Löh Textbook 2017 Springer International Publishing AG 2017 MSC 2010 20F65 20F67 20F69 20F05
描述.Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology...Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability...This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises..
出版日期Textbook 2017
关键词MSC 2010 20F65 20F67 20F69 20F05 20F10 20E08 20E05 20E06; geometric group theory; group actions and ge
版次1
doihttps://doi.org/10.1007/978-3-319-72254-2
isbn_softcover978-3-319-72253-5
isbn_ebook978-3-319-72254-2Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Geometric Group Theory影响因子(影响力)




书目名称Geometric Group Theory影响因子(影响力)学科排名




书目名称Geometric Group Theory网络公开度




书目名称Geometric Group Theory网络公开度学科排名




书目名称Geometric Group Theory被引频次




书目名称Geometric Group Theory被引频次学科排名




书目名称Geometric Group Theory年度引用




书目名称Geometric Group Theory年度引用学科排名




书目名称Geometric Group Theory读者反馈




书目名称Geometric Group Theory读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:22:48 | 显示全部楼层
发表于 2025-3-22 03:41:08 | 显示全部楼层
发表于 2025-3-22 04:59:43 | 显示全部楼层
发表于 2025-3-22 09:20:17 | 显示全部楼层
发表于 2025-3-22 15:04:16 | 显示全部楼层
Drought Stress Tolerance in Plants, Vol 1Groups are an abstract concept from algebra, formalising the study of symmetries of various mathematical objects.
发表于 2025-3-22 17:06:44 | 显示全部楼层
https://doi.org/10.1007/b110045A fundamental question of geometric group theory is how groups can be viewed as geometric objects; one way to view a (finitely generated) group as a geometric object is via Cayley graphs:
发表于 2025-3-23 00:06:10 | 显示全部楼层
https://doi.org/10.1007/978-3-642-58474-9The first quasi-isometry invariant we discuss in detail is the growth type. We essentially measure the “volume” of balls in a given finitely generated group and study the asymptotic behaviour when the radius tends to infinity.
发表于 2025-3-23 03:31:08 | 显示全部楼层
Werner Baumann,Bettina Herberg-LiedtkeIn the universe of groups (Figure 1.2), on the side opposite to Abelian, nilpotent, solvable, and amenable groups, we find free groups, and then further out, negatively curved groups. This chapter is devoted to negatively curved groups.
发表于 2025-3-23 05:50:35 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 06:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表