找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Dynamics; Constantin Udrişte Book 2000 Kluwer Academic Publishers 2000 dynamics.geometry.manifold.mathematics.mechanics

[复制链接]
查看: 45580|回复: 46
发表于 2025-3-21 19:52:39 | 显示全部楼层 |阅读模式
书目名称Geometric Dynamics
编辑Constantin Udrişte
视频video
丛书名称Mathematics and Its Applications
图书封面Titlebook: Geometric Dynamics;  Constantin Udrişte Book 2000 Kluwer Academic Publishers 2000 dynamics.geometry.manifold.mathematics.mechanics
描述Geometric dynamics is a tool for developing a mathematical representation of real world phenomena, based on the notion of a field line described in two ways: -as the solution of any Cauchy problem associated to a first-order autonomous differential system; -as the solution of a certain Cauchy problem associated to a second-order conservative prolongation of the initial system. The basic novelty of our book is the discovery that a field line is a geodesic of a suitable geometrical structure on a given space (Lorentz-Udri~te world-force law). In other words, we create a wider class of Riemann-Jacobi, Riemann-Jacobi-Lagrange, or Finsler-Jacobi manifolds, ensuring that all trajectories of a given vector field are geodesics. This is our contribution to an old open problem studied by H. Poincare, S. Sasaki and others. From the kinematic viewpoint of corpuscular intuition, a field line shows the trajectory followed by a particle at a point of the definition domain of a vector field, if the particle is sensitive to the related type of field. Therefore, field lines appear in a natural way in problems of theoretical mechanics, fluid mechanics, physics, thermodynamics, biology, chemistry, etc
出版日期Book 2000
关键词dynamics; geometry; manifold; mathematics; mechanics
版次1
doihttps://doi.org/10.1007/978-94-011-4187-1
isbn_softcover978-94-010-5822-3
isbn_ebook978-94-011-4187-1
copyrightKluwer Academic Publishers 2000
The information of publication is updating

书目名称Geometric Dynamics影响因子(影响力)




书目名称Geometric Dynamics影响因子(影响力)学科排名




书目名称Geometric Dynamics网络公开度




书目名称Geometric Dynamics网络公开度学科排名




书目名称Geometric Dynamics被引频次




书目名称Geometric Dynamics被引频次学科排名




书目名称Geometric Dynamics年度引用




书目名称Geometric Dynamics年度引用学科排名




书目名称Geometric Dynamics读者反馈




书目名称Geometric Dynamics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:27:46 | 显示全部楼层
发表于 2025-3-22 02:04:45 | 显示全部楼层
Potential Differential Systems of Order One and Catastrophe Theory,calar field ƒ, and curves of maximal local increase off. If the potential ƒ is a subharmonic (respectively harmonic or supraharmonic) fuction, i.e., Δf≥ 0 (respectively Δf = 0 or Δƒ≤ 0), then the flow generated by grad f increases (respectively preserves or decreases) the volume (see 5.1).
发表于 2025-3-22 05:46:30 | 显示全部楼层
发表于 2025-3-22 10:25:01 | 显示全部楼层
发表于 2025-3-22 15:11:21 | 显示全部楼层
发表于 2025-3-22 18:58:35 | 显示全部楼层
Book 2000e trajectory followed by a particle at a point of the definition domain of a vector field, if the particle is sensitive to the related type of field. Therefore, field lines appear in a natural way in problems of theoretical mechanics, fluid mechanics, physics, thermodynamics, biology, chemistry, etc
发表于 2025-3-22 22:35:29 | 显示全部楼层
e shows the trajectory followed by a particle at a point of the definition domain of a vector field, if the particle is sensitive to the related type of field. Therefore, field lines appear in a natural way in problems of theoretical mechanics, fluid mechanics, physics, thermodynamics, biology, chemistry, etc978-94-010-5822-3978-94-011-4187-1
发表于 2025-3-23 02:38:55 | 显示全部楼层
https://doi.org/10.1007/978-1-349-19886-3are self-distributed as tangent vectors to curves. The parallel, torse forming, Newtonian, electrostatic, etc vector fields serve as examples for finding analytic expressions of the field lines (see 3.1, 3.2).
发表于 2025-3-23 07:10:56 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 01:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表