找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Discrepancy; An Illustrated Guide Jiří Matoušek Book 1999 Springer-Verlag Berlin Heidelberg 1999 Combinatorics.Dimension.Diskrepa

[复制链接]
楼主: 重要
发表于 2025-3-25 04:21:38 | 显示全部楼层
978-3-642-03941-6Springer-Verlag Berlin Heidelberg 1999
发表于 2025-3-25 08:51:16 | 显示全部楼层
发表于 2025-3-25 14:44:29 | 显示全部楼层
发表于 2025-3-25 16:55:35 | 显示全部楼层
https://doi.org/10.1007/978-981-10-7500-1In this chapter, we are going to investigate the combinatorial discrepancy, an exciting and significant subject in its own right. From Section 1.3, we recall the basic definition: If . is a finite set and . ⊑ 2. is a family of sets on .,a . is any mapping ., and we have disc ., where .
发表于 2025-3-25 21:10:01 | 显示全部楼层
发表于 2025-3-26 02:41:16 | 显示全部楼层
发表于 2025-3-26 06:35:03 | 显示全部楼层
https://doi.org/10.1007/978-3-658-18971-6id, placed in the unit square in an appropriate scale, as in Fig. 2.1(a). It is easy to see that this gives discrepancy of the order .. Another attempt might be n independent random points in the unit square as in Fig. 2.1(b), but these typically have discrepancy about . as well. (In fact, with high
发表于 2025-3-26 09:41:20 | 显示全部楼层
发表于 2025-3-26 14:42:36 | 显示全部楼层
发表于 2025-3-26 19:01:24 | 显示全部楼层
https://doi.org/10.1007/978-3-476-05622-1seen some lower bounds in Chapter 4 but not in a geometric setting). So far we have not answered the basic question, Problem 1.1, namely whether the discrepancy for axis-parallel rectangles must grow to infinity as n . → ∞. An answer is given in Section 6.1, where we prove that .(.,..) is at least o
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 14:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表