找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Configurations of Singularities of Planar Polynomial Differential Systems; A Global Classificat Joan C. Artés,Jaume Llibre,Nicola

[复制链接]
楼主: Withdrawal
发表于 2025-3-25 04:06:44 | 显示全部楼层
发表于 2025-3-25 07:33:28 | 显示全部楼层
Quadratic systems with definite singularities of total multiplicity threeAccording to Proposition 5.1, for a quadratic system to have finite singularities of total multiplicity three (i.e. .. = 3), the conditions .. = 0 and .. ≠ 0 must be satisfied. Then by Theorem 6.4 the following lemma is valid.
发表于 2025-3-25 14:43:18 | 显示全部楼层
Quadratic systems with finite singularities of total multiplicity fourConsider real the quadratic systems (8.1). According to Proposition 5.1 for a quadratic system (8.1) to have finite singularities of total multiplicity four (i.e. .. = 4), the condition .. ≠ 0 must be satisfied. Therefore according to Theorem 6.4 the following lemma is valid.
发表于 2025-3-25 19:05:19 | 显示全部楼层
发表于 2025-3-25 23:44:27 | 显示全部楼层
发表于 2025-3-26 01:20:01 | 显示全部楼层
发表于 2025-3-26 07:54:45 | 显示全部楼层
发表于 2025-3-26 09:38:56 | 显示全部楼层
发表于 2025-3-26 15:50:44 | 显示全部楼层
Part 1: Introduction and General Principles, the publication of this book (see [41, 29, 338, 301, 26, 32]). Roughly speaking these results give us global information about the possibilities for the number and multiplicity of finite singularities (see [41, 29]), the canonical forms for these possibilities, the weak singularities that may occur
发表于 2025-3-26 17:31:43 | 显示全部楼层
Book 2021cient and less time-consuming..Given its scope, the book will appeal to specialists on polynomial differential systems, pure and applied mathematicians who need to study bifurcation diagrams of families of such systems, Ph.D. students, and postdoctoral fellows..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 23:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表