找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Complex Analysis; In Honor of Kang-Tae Jisoo Byun,Hong Rae Cho,Jong-Do Park Conference proceedings 2018 Springer Nature Singapore

[复制链接]
楼主: 抵押证书
发表于 2025-3-26 23:48:15 | 显示全部楼层
发表于 2025-3-27 04:06:46 | 显示全部楼层
,A Degenerate Donnelly–Fefferman Theorem and its Applications,We prove a degenerate Donnelly–Fefferman theorem. Applications to local non-integrability of plurisubharmonic functions and . boundary decay estimates of the Bergman kernel are given.
发表于 2025-3-27 06:36:48 | 显示全部楼层
,Variation of Kähler-Einstein Metrics on Pseudoconvex Domains,The variation of Kähler-Einstein metrics on a family of canonically polarized compact Kähler manfolds is shown to be positive by Schumacher. In this survey, we introduce the variation of the Kähler-Einstein metrics on a family of bounded pseudoconvex domains and discuss the idea how to prove the positivity of the variation.
发表于 2025-3-27 13:21:32 | 显示全部楼层
Group Actions in Several Complex Variables: A Survey,We give a survey on some recent developments about group actions in several complex variables, including rigidity of the automorphism groups of the invariant domains in Stein homogenous spaces under complex reductive groups, and extension and rigidity of the proper holomorphic mappings of the domains in . with symmetries.
发表于 2025-3-27 14:46:49 | 显示全部楼层
发表于 2025-3-27 20:01:08 | 显示全部楼层
A CR Embedding Problem for an Algebraic Levi Non-degenerate Hypersurface into a Hyperquadric,We give a survey on the current developments of the embeddability problem of a Levi non-degenerate hypersurface into its model, i.e., hyerquadrics. We also formulate and study a local sums-of-squares problem, and make connections with the embeddability problem.
发表于 2025-3-27 22:08:09 | 显示全部楼层
发表于 2025-3-28 05:51:52 | 显示全部楼层
发表于 2025-3-28 08:40:13 | 显示全部楼层
https://doi.org/10.1007/978-981-13-1672-2Complex Dynamics; L^2 extension; Holomorphic mappings; Variety of minimal rational tangents; Multiplier
发表于 2025-3-28 11:24:47 | 显示全部楼层
Jisoo Byun,Hong Rae Cho,Jong-Do ParkPresents recent developments in complex analysis and geometry.Contains contributions from world-renowned scholars in the field.Covers important topics in the area
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 03:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表