找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA J. Lindenstrauss,V. Milman Conference proceedings 1995 Birkhäuser Verlag 199

[复制链接]
楼主: counterfeit
发表于 2025-3-28 17:18:03 | 显示全部楼层
发表于 2025-3-28 19:10:10 | 显示全部楼层
https://doi.org/10.1007/978-1-4612-2140-1Let . = (..) be positive definite Hermitian . × . matrix. We prove a following strengthening of the Hadamard inequality:.We give similar estimate in the case of non-Hermitian matrix. We use these results for a short proof of the existence of Von Koh’s infinite determinants, and also give a strong isoperimetric inequality for simplices in ℝ.
发表于 2025-3-28 23:28:23 | 显示全部楼层
发表于 2025-3-29 06:39:13 | 显示全部楼层
发表于 2025-3-29 07:14:37 | 显示全部楼层
发表于 2025-3-29 12:31:57 | 显示全部楼层
,Remarks on Bourgain’s Problem on Slicing of Convex Bodies,For a convex symmetric body . ⊂ ℝ. we define a number .. by:. If the minimum is attained for . = . we say that . is in isotropic position. Any K has an affine image which is in isotropic position.
发表于 2025-3-29 18:28:24 | 显示全部楼层
A Note on the Banach-Mazur Distance to the Cube,If . is an .-dimensional normed space, and . denotes the Banach-Mazur distance, then .(., ℓ.) ≤ ...
发表于 2025-3-29 23:05:20 | 显示全部楼层
Uniform Non-Equivalence between Euclidean and Hyperbolic Spaces,It is well known that the Euclidean and hyperbolic (Lobachevsky-Bolyai) spaces .., .. of the same dimension . are homeomorphic. V. A. Efremovich ([1], [2]) proved in 1945, that .. and .. are not uniformly homeomorphic; this means that there does not exist any homeomorphism between them that is uniform together with its inverse.
发表于 2025-3-30 03:03:12 | 显示全部楼层
A Remark about Distortion,In this note we show that every Banach space . not containing .. uniformly and with unconditional basis contains an arbitrarily distortable subspace.
发表于 2025-3-30 04:45:25 | 显示全部楼层
Symmetric Distortion in ,,,We take notation and definitions from the preceding Note [M].
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 08:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表