找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘az Klartag,Emanuel Milman Book 2020 Springer Nature Switzerland AG 2020 A

[复制链接]
楼主: vitamin-D
发表于 2025-3-23 13:30:58 | 显示全部楼层
发表于 2025-3-23 16:56:37 | 显示全部楼层
发表于 2025-3-23 21:43:34 | 显示全部楼层
Dissension in the House of CommonsWe extend the decoupling results of the first two authors to the case of real analytic surfaces of revolution in .. New examples of interest include the torus and the perturbed cone.
发表于 2025-3-24 01:14:56 | 显示全部楼层
Dissent in the Years of KrushchevWe show that the discrete Hardy–Littlewood maximal functions associated with the Euclidean balls in . with dyadic radii have bounds independent of the dimension on . for . ∈ [2, .].
发表于 2025-3-24 05:55:46 | 显示全部楼层
Dissimilar Metal Joining by Laser Welding,In the first half of this note we construct Gaussian measures on . which do not satisfy a strong version of the (B)-property. In the second half we discuss equivalent functional formulations of the (B)-conjecture.
发表于 2025-3-24 08:42:07 | 显示全部楼层
Recidivist Converts in Early Modern Europe,We discuss new proofs, and new forms, of a reverse logarithmic Sobolev inequality, with respect to the standard Gaussian measure, for low-complexity functions, measured in terms of Gaussian-width. In particular, we provide a dimension-free improvement for a related result given in Eldan (Geom Funct Anal 28:1548–1596, 2018).
发表于 2025-3-24 11:03:53 | 显示全部楼层
发表于 2025-3-24 17:40:35 | 显示全部楼层
,Bobkov’s Inequality via Optimal Control Theory,We give a Bellman proof of Bobkov’s inequality using arguments of dynamic programming. As a byproduct of the method we obtain a characterization of smooth optimizers.
发表于 2025-3-24 19:16:34 | 显示全部楼层
Arithmetic Progressions in the Trace of Brownian Motion in Space,It is shown that the trace of three dimensional Brownian motion contains arithmetic progressions of length 5 and no arithmetic progressions of length 6 a.s.
发表于 2025-3-25 00:02:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 07:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表