找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Analysis of the Bergman Kernel and Metric; Steven G. Krantz Textbook 2013 Springer Science+Business Media New York 2013 Bergman

[复制链接]
楼主: Ensign
发表于 2025-3-25 06:07:03 | 显示全部楼层
发表于 2025-3-25 08:54:42 | 显示全部楼层
The Group Experience of Migrant Criminals,s us that a connected open set (a .) is a domain of holomorphy if and only if it is pseudoconvex. For us, in the present book, pseudoconvexity is . pseudoconvexity; this is defined in terms of the positive semi-definiteness of the Levi form.
发表于 2025-3-25 14:13:18 | 显示全部楼层
Elisabeth Staksrud,Kjartan Ólafssoning theorem (at least in the traditional sense) in several complex variables. More recent results of Burns, Shnider, and Wells [BSW] and of Greene and Krantz [GRK1, GRK2] confirm how truly dismal the situation is. First, we need a definition.
发表于 2025-3-25 17:28:32 | 显示全部楼层
发表于 2025-3-25 23:18:52 | 显示全部楼层
发表于 2025-3-26 01:20:05 | 显示全部楼层
发表于 2025-3-26 07:19:48 | 显示全部楼层
Further Geometric Explorations,composition of mappings. The standard topology on this group is uniform convergence on compact sets, or the compact-open topology. We denote the automorphism group by .. When . is a bounded domain, the group . is a real (never a complex) Lie group.
发表于 2025-3-26 09:05:59 | 显示全部楼层
Additional Analytic Topics,s us that a connected open set (a .) is a domain of holomorphy if and only if it is pseudoconvex. For us, in the present book, pseudoconvexity is . pseudoconvexity; this is defined in terms of the positive semi-definiteness of the Levi form.
发表于 2025-3-26 15:03:18 | 显示全部楼层
https://doi.org/10.1007/978-1-4614-7924-6Bergman kernel; Bergman metric; Bergman theory; applications to Bergman; holomorphic mapping; integral fo
发表于 2025-3-26 19:16:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 17:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表