找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Analysis and Nonlinear Partial Differential Equations; Stefan Hildebrandt,Hermann Karcher Book 2003 Springer-Verlag Berlin Heide

[复制链接]
楼主: Wilder
发表于 2025-3-25 05:38:52 | 显示全部楼层
Maritime Sudden Mass Casualty IncidentsFor . ≥ 2 let .. be the Teichmüller space of hyperbolic metrics on a closed surface of genus ., and let ∂.. be its Thurston boundary. Using intersection with 6. – 5 simple closed geodesics, we construct an embedding of ∂.. into the real projective space ℝ...
发表于 2025-3-25 08:43:06 | 显示全部楼层
https://doi.org/10.1007/978-3-030-54902-2In 1974 Chern and Moser [4] constructed normal forms for real-analytic hypersurfaces with non-degenerate Levi-form in ℂ... For a real-analytic hypersurface . in ℂ. this means that there are local coordinates . centered in 0 ∈ . such that the equation of . takes the form
发表于 2025-3-25 13:37:33 | 显示全部楼层
发表于 2025-3-25 19:09:11 | 显示全部楼层
https://doi.org/10.1007/978-981-287-511-2In this survey I would like to report on some recent results concerning the ..for functions . : Ω → ℝ, Ω ⊂ ℝ. a domain, or Ω = ℝ.. Here α denotes some real number.
发表于 2025-3-25 22:28:42 | 显示全部楼层
https://doi.org/10.1007/978-94-6091-699-1The subject of this paper is the evolution of hypersurfaces Γ(.) ⊂ ℝ. according to the law
发表于 2025-3-26 00:52:33 | 显示全部楼层
Definitional Excursions: The Meanings of ,For a bounded Lipschitz domain Ω ⊂ ℝ., . ≥ 2, and a function .. ∈ ..(Ω;ℝ.)we consider the variational problem. where .:ℝ. → [0,∞]is a strictly convex integrand of linear growth, i.e..holds with suitable constants ., . > 0, .,. ∈ ℝ.
发表于 2025-3-26 06:45:35 | 显示全部楼层
发表于 2025-3-26 09:14:06 | 显示全部楼层
发表于 2025-3-26 15:07:51 | 显示全部楼层
Parametrizations of Teichmüller Space and Its Thurston BoundaryFor . ≥ 2 let .. be the Teichmüller space of hyperbolic metrics on a closed surface of genus ., and let ∂.. be its Thurston boundary. Using intersection with 6. – 5 simple closed geodesics, we construct an embedding of ∂.. into the real projective space ℝ...
发表于 2025-3-26 19:13:40 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 15:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表