找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Algorithms and Combinatorial Optimization; Martin Grötschel,László Lovász,Alexander Schrijver Book 19881st edition Springer-Verl

[复制链接]
楼主: 固执已见
发表于 2025-3-28 15:02:10 | 显示全部楼层
发表于 2025-3-28 20:29:19 | 显示全部楼层
https://doi.org/10.1007/978-0-387-93840-0ction together with polyhedral information about these problems can be used to design polynomial time algorithms. In this chapter we give an overview about combinatorial optimization problems that are solvable in polynomial time. We also survey important theorems that provide polyhedral descriptions
发表于 2025-3-29 02:33:57 | 显示全部楼层
Disability Culture and Community Performancegraphs. (Alternative names for this problem used in the literature are vertex packing, or coclique, or independent set problem.) Our basic technique will be to look for various classes of inequalities valid for the stable set polytope, and then develop polynomial time algorithms to check if a given
发表于 2025-3-29 06:14:36 | 显示全部楼层
Syrus Ware,Joan Ruzsa,Giselle Diasny combinatorial theorems and problems, submodularity is involved, in one form or another, and submodularity often plays an essential role in a proof or an algorithm. Moreover, analogous to the fast methods for convex function minimization, it turns out that submodular functions can also be minimize
发表于 2025-3-29 10:15:21 | 显示全部楼层
https://doi.org/10.1007/978-3-642-97881-4Basis Reduction in Lattices; Basisreduktion bei Gittern; Combinatorics; Convexity; Ellipsoid Method; Elli
发表于 2025-3-29 14:09:17 | 显示全部楼层
发表于 2025-3-29 19:25:01 | 显示全部楼层
,Publications: Autumn 1832–Spring 1839,Convex sets and convex functions are typical objects of study in mathematical programming, convex analysis, and related areas. Here are some key questions one encounters frequently:
发表于 2025-3-29 20:27:12 | 显示全部楼层
Mathematical Preliminaries,This chapter summarizes mathematical background material from linear algebra, linear programming, and graph theory used in this book. We expect the reader to be familiar with the concepts treated here. We do not recommend to go thoroughly through all the definitions and results listed in the sequel — they are mainly meant for reference.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 07:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表