找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geodesic and Horocyclic Trajectories; Françoise Dal’Bo Textbook 2011 Springer-Verlag London Limited 2011 Fuchsian group.Poincaré half plan

[复制链接]
楼主: 贬损
发表于 2025-3-23 09:53:23 | 显示全部楼层
发表于 2025-3-23 14:37:26 | 显示全部楼层
Topological dynamics of the horocycle flow,he quotient of ..ℍ by the Fuchsian group corresponding to .. In the geometrically finite case, we show that the horocycle flow is less topologically turbulent than the geodesic flow (Sect. 4)..Throughout this chapter, we use the definitions and notations associated with the dynamics of a flow as originally introduced in Appendix A.
发表于 2025-3-23 18:41:57 | 显示全部楼层
Textbook 2011nces are reserved until the end of each chapter in the Comments section. Topics within the text cover geometry, and examples, of Fuchsian groups; topological dynamics of the geodesic flow; Schottky groups; the Lorentzian point of view and Trajectories and Diophantine approximations.
发表于 2025-3-24 01:47:29 | 显示全部楼层
https://doi.org/10.1007/978-3-662-28982-2es of ..(...) in terms of sequences. As applications, we will construct, in the general case of a non-elementary Fuchsian group .′, trajectories of the geodesic flow on . which are neither periodic nor dense.
发表于 2025-3-24 03:20:17 | 显示全部楼层
发表于 2025-3-24 06:38:59 | 显示全部楼层
发表于 2025-3-24 13:47:31 | 显示全部楼层
发表于 2025-3-24 17:06:37 | 显示全部楼层
发表于 2025-3-24 20:21:55 | 显示全部楼层
Topological dynamics of the horocycle flow,ur method is based on a correspondence between the set of horocycles of ℍ and the space of non-zero vectors in ℝ. modulo {±Id}. This vectorial point of view allows one to relate the topological dynamics of the linear action on ℝ. of a discrete subgroup . of SL(2,ℝ) to that of the horocycle flow on t
发表于 2025-3-25 00:45:43 | 显示全部楼层
The Lorentzian point of view, group associated with . on {±Id}ℝ.−{0}..Our motivation in this chapter, is to construct a linear representation of . taking into account simultaneously the dynamics of the horocycle and of the geodesic flows. Many proofs are reformulations of proofs given in the previous chapters. In this case, the
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-4 23:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表