找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geodesic Convexity in Graphs; Ignacio M. Pelayo Book 2013 Ignacio M. Pelayo 2013 Convex hull.Geodesic convexity.Geodetic closure.Graph con

[复制链接]
查看: 23664|回复: 39
发表于 2025-3-21 16:53:45 | 显示全部楼层 |阅读模式
书目名称Geodesic Convexity in Graphs
编辑Ignacio M. Pelayo
视频video
概述Geodesic Convexity in Graphs ?is a self-contained monograph which is devoted to geodesic convexity on finite, simply connected graphs.Includes specific definitions, discussion and examples, results, p
丛书名称SpringerBriefs in Mathematics
图书封面Titlebook: Geodesic Convexity in Graphs;  Ignacio M. Pelayo Book 2013 Ignacio M. Pelayo 2013 Convex hull.Geodesic convexity.Geodetic closure.Graph con
描述​​​​​​​​Geodesic Convexity in Graphs is devoted to the study of the geodesic convexity on finite, simple, connected graphs. The first chapter includes the main definitions and results on graph theory, metric graph theory and graph path convexities. The following chapters focus exclusively on the geodesic convexity, including motivation and background, specific definitions, discussion and examples, results, proofs, exercises and open problems. The main and most st​udied parameters involving geodesic convexity in graphs are both the geodetic and the hull number which are defined as the cardinality of minimum geodetic and hull set, respectively. This text reviews various results, obtained during the last one and a half decade, relating these two  invariants and some others such as convexity number, Steiner number, geodetic iteration number, Helly number, and Caratheodory number to a wide range a contexts, including products, boundary-type vertex sets, and perfect graph families. This monograph can serve as a supplement to a half-semester graduate course in geodesic convexity but is primarily a guide for postgraduates and researchers interested in topics related to metric graph theory
出版日期Book 2013
关键词Convex hull; Geodesic convexity; Geodetic closure; Graph convexity; Hull set; Metric graph theory; partial
版次1
doihttps://doi.org/10.1007/978-1-4614-8699-2
isbn_softcover978-1-4614-8698-5
isbn_ebook978-1-4614-8699-2Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightIgnacio M. Pelayo 2013
The information of publication is updating

书目名称Geodesic Convexity in Graphs影响因子(影响力)




书目名称Geodesic Convexity in Graphs影响因子(影响力)学科排名




书目名称Geodesic Convexity in Graphs网络公开度




书目名称Geodesic Convexity in Graphs网络公开度学科排名




书目名称Geodesic Convexity in Graphs被引频次




书目名称Geodesic Convexity in Graphs被引频次学科排名




书目名称Geodesic Convexity in Graphs年度引用




书目名称Geodesic Convexity in Graphs年度引用学科排名




书目名称Geodesic Convexity in Graphs读者反馈




书目名称Geodesic Convexity in Graphs读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:58:51 | 显示全部楼层
发表于 2025-3-22 00:50:56 | 显示全部楼层
发表于 2025-3-22 06:54:30 | 显示全部楼层
发表于 2025-3-22 12:34:43 | 显示全部楼层
发表于 2025-3-22 13:10:33 | 显示全部楼层
发表于 2025-3-22 17:18:50 | 显示全部楼层
发表于 2025-3-23 00:58:55 | 显示全部楼层
发表于 2025-3-23 02:07:57 | 显示全部楼层
发表于 2025-3-23 08:01:05 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 14:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表