找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Genetic and Evolutionary Computation — GECCO 2003; Genetic and Evolutio Erick Cantú-Paz,James A. Foster,Julian Miller Conference proceeding

[复制链接]
查看: 38824|回复: 61
发表于 2025-3-21 16:16:43 | 显示全部楼层 |阅读模式
书目名称Genetic and Evolutionary Computation — GECCO 2003
副标题Genetic and Evolutio
编辑Erick Cantú-Paz,James A. Foster,Julian Miller
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Genetic and Evolutionary Computation — GECCO 2003; Genetic and Evolutio Erick Cantú-Paz,James A. Foster,Julian Miller Conference proceeding
出版日期Conference proceedings 2003
关键词algorithm; algorithms; coevolution; evolution; genetic algorithms; genetic programming; hardware; learning;
版次1
doihttps://doi.org/10.1007/3-540-45110-2
isbn_softcover978-3-540-40603-7
isbn_ebook978-3-540-45110-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2003
The information of publication is updating

书目名称Genetic and Evolutionary Computation — GECCO 2003影响因子(影响力)




书目名称Genetic and Evolutionary Computation — GECCO 2003影响因子(影响力)学科排名




书目名称Genetic and Evolutionary Computation — GECCO 2003网络公开度




书目名称Genetic and Evolutionary Computation — GECCO 2003网络公开度学科排名




书目名称Genetic and Evolutionary Computation — GECCO 2003被引频次




书目名称Genetic and Evolutionary Computation — GECCO 2003被引频次学科排名




书目名称Genetic and Evolutionary Computation — GECCO 2003年度引用




书目名称Genetic and Evolutionary Computation — GECCO 2003年度引用学科排名




书目名称Genetic and Evolutionary Computation — GECCO 2003读者反馈




书目名称Genetic and Evolutionary Computation — GECCO 2003读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:31:30 | 显示全部楼层
Reinforcement Learning Estimation of Distribution Algorithmpromising solutions to generate a new population of solutions. We call it Reinforcement Learning Estimation of Distribution Algorithm (RELEDA). For the estimation of the joint probability distribution we consider each variable as univariate. Then we update the probability of each variable by applyin
发表于 2025-3-22 01:07:50 | 显示全部楼层
Hierarchical BOA Solves Ising Spin Glasses and MAXSAT anything easier. This paper applies hBOA to two important classes of real-world problems: Ising spin-glass systems and maximum satisfiability (MAXSAT). The paper shows how easy it is to apply hBOA to real-world optimization problems—in most cases hBOA can be applied without any prior problem analys
发表于 2025-3-22 04:57:48 | 显示全部楼层
ERA: An Algorithm for Reducing the Epistasis of SAT Problemsroduces a more suited representation (with lower epistasis) for a Genetic Algorithm (GA) by preprocessing the original SAT problem; and b) A Genetic Algorithm that solves the preprocesed instances..ERA is implemented by a simulated annealing algorithm (SA), which transforms the original SAT problem
发表于 2025-3-22 11:11:45 | 显示全部楼层
Learning a Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to Hyper-heurnge of problems. To be worthwhile, such a combination should outperform all of the constituent heuristics. In this paper we describe a novel messy-GA-based approach that learns such a heuristic combination for solving one-dimensional bin-packing problems. When applied to a large set of benchmark pro
发表于 2025-3-22 15:54:48 | 显示全部楼层
Population Sizing for the Redundant Trivial Voting Mappingundant representation for binary phenotypes. A population sizing model is presented that quantitatively predicts the influence of the TV mapping and variants of this encoding on the performance of GAs. The results indicate that when using this encoding GA performance depends on the influence of the
发表于 2025-3-22 17:15:39 | 显示全部楼层
Non-stationary Function Optimization Using Polygenic Inheritanceing target, and tend to converge on a local optimum that appears early in a run..It is generally accepted that diploid GAs can cope with these problems because they have a ., that is, genes that may be required in the future are maintained in the current population. This paper describes a haploid GA
发表于 2025-3-22 21:42:45 | 显示全部楼层
Scalability of Selectorecombinative Genetic Algorithms for Problems with Tight Linkage the BB mixing time and the population sizing dictated by BB mixing for single-point crossover. The population-sizing model suggests that for moderate-to-large problems, BB mixing – instead of BB decision making and BB supply – bounds the population size required to obtain a solution of constant qua
发表于 2025-3-23 04:24:45 | 显示全部楼层
New Entropy-Based Measures of Gene Significance and Epistasissuggest three epistasis-related measures: gene significance, gene epistasis, and problem epistasis. The measures are believed to be helpful to investigate both the individual epistasis of a gene group and the overall epistasis that a problem has. The experimental results on various well-known proble
发表于 2025-3-23 08:39:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 01:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表