找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Genetic Theory for Cubic Graphs; Pouya Baniasadi,Vladimir Ejov,Michael Haythorpe Book 2016 Springer International Publishing Switzerland 2

[复制链接]
楼主: HIV763
发表于 2025-3-23 10:29:01 | 显示全部楼层
发表于 2025-3-23 17:08:19 | 显示全部楼层
发表于 2025-3-23 21:42:02 | 显示全部楼层
发表于 2025-3-23 22:18:44 | 显示全部楼层
Genetic Theory for Cubic Graphs,t a slightly more complicated descendant. We prove that every descendant can be constructed from a family of genes via the use of our six operations, and state the result (to be proved in Chap. 3) that this family is unique for any given descendant.
发表于 2025-3-24 02:27:32 | 显示全部楼层
Inherited Properties of Descendants,ively, to construct a graph with desired properties by choosing smaller genes with those properties. We follow each section with a discussion of famous results and conjectures relating to the graph properties, and how the results of this chapter relate to them.
发表于 2025-3-24 10:23:53 | 显示全部楼层
Uniqueness of Ancestor Genes, graph has cardinality which is a fixed constant for that graph. We then proceed to prove that for any descendant without parthenogenic objects, it is possible to isolate at least two genes with single inverse breeding operations. Finally, we use each of these results to prove the uniqueness theorem.
发表于 2025-3-24 11:58:44 | 显示全部楼层
Book 2016lesman Problem) may be “inherited” from simpler graphs which – in an appropriate sense – could be seen as “ancestors” of the given graph instance. The authors propose a partitioning of the set of unlabeled, connected cubic graphs into two disjoint subsets named genes and descendants, where the cardi
发表于 2025-3-24 14:53:20 | 显示全部楼层
发表于 2025-3-24 19:38:29 | 显示全部楼层
发表于 2025-3-24 23:40:06 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 19:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表