找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Genetic Programming Theory and Practice IV; Rick Riolo,Terence Soule,Bill Worzel Book 2007 Springer-Verlag US 2007 Automat.Boosting.algori

[复制链接]
楼主: ODDS
发表于 2025-3-25 03:58:55 | 显示全部楼层
发表于 2025-3-25 09:33:03 | 显示全部楼层
Boosting Improves Stability and Accuracy of Genetic Programming in Biological Sequence Classificatiassifiers to bagging and boosting with crossvalidation and parameter optimization requires more computing power. A special-purpose search processor for fitness evaluation renders boosted genetic programming practical for our purposes.
发表于 2025-3-25 15:26:36 | 显示全部楼层
Design of Posynomial Models for Mosfets: Symbolic Regression Using Genetic Algorithms,xpressions for a circuit’s performance measurements. We show how a genetic algorithm can be exploited to evolve a posynomial expression (i.e. model) of transistor (i.e. mosfet) behavior more accurately than statistical techniques in the literature.
发表于 2025-3-25 16:19:02 | 显示全部楼层
发表于 2025-3-25 22:37:15 | 显示全部楼层
978-1-4419-4123-7Springer-Verlag US 2007
发表于 2025-3-26 03:16:55 | 显示全部楼层
Genetic Programming Theory and Practice IV978-0-387-49650-4Series ISSN 1932-0167 Series E-ISSN 1932-0175
发表于 2025-3-26 07:39:03 | 显示全部楼层
发表于 2025-3-26 08:59:56 | 显示全部楼层
发表于 2025-3-26 13:22:44 | 显示全部楼层
发表于 2025-3-26 16:46:52 | 显示全部楼层
https://doi.org/10.1007/978-3-030-54913-8 propose majority voting technique for the prediction of the class of a test sample. In the application to robotics, we use GP to generate the motion sequences of humanoid robots. We introduce an integrated approach, i.e., the combination of GP and reinforcement learning, to design the desirable mot
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 18:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表