找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Genetic Programming; 22nd European Confer Lukas Sekanina,Ting Hu,Pablo García-Sánchez Conference proceedings 2019 Springer Nature Switzerla

[复制链接]
查看: 30844|回复: 61
发表于 2025-3-21 16:19:55 | 显示全部楼层 |阅读模式
书目名称Genetic Programming
副标题22nd European Confer
编辑Lukas Sekanina,Ting Hu,Pablo García-Sánchez
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Genetic Programming; 22nd European Confer Lukas Sekanina,Ting Hu,Pablo García-Sánchez Conference proceedings 2019 Springer Nature Switzerla
描述.This book constitutes the refereed proceedings of the 22nd European Conference on Genetic Programming, EuroGP 2019, held as part of Evo* 2019, in Leipzig, Germany, in April 2019, co-located with the Evo* events EvoCOP, EvoMUSART, and EvoApplications...The 12 revised full papers and 6 short papers presented in this volume were carefully reviewed and selected from 36 submissions. They cover a wide range of topics and reflect the current state of research in the field. With a special focus on real-world applications in 2019, the papers are devoted to topics such as the test data design in software engineering, fault detection and classification of induction motors, digital circuit design, mosquito abundance prediction, machine learning and cryptographic function design... .
出版日期Conference proceedings 2019
关键词artificial intelligence; Boolean function; Cartesian genetic programming; cryptography; data mining; evol
版次1
doihttps://doi.org/10.1007/978-3-030-16670-0
isbn_softcover978-3-030-16669-4
isbn_ebook978-3-030-16670-0Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称Genetic Programming影响因子(影响力)




书目名称Genetic Programming影响因子(影响力)学科排名




书目名称Genetic Programming网络公开度




书目名称Genetic Programming网络公开度学科排名




书目名称Genetic Programming被引频次




书目名称Genetic Programming被引频次学科排名




书目名称Genetic Programming年度引用




书目名称Genetic Programming年度引用学科排名




书目名称Genetic Programming读者反馈




书目名称Genetic Programming读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:49:14 | 显示全部楼层
https://doi.org/10.1007/978-3-662-26496-6his study, we present the application of GP to predict the distribution of ., a mosquito species vector of West Nile virus (WNV), in Piedmont, Italy. Our modelling approach took into consideration the ecological factors which affect mosquitoes abundance. Our results showed that GP was able to outper
发表于 2025-3-22 04:00:33 | 显示全部楼层
发表于 2025-3-22 06:05:50 | 显示全部楼层
发表于 2025-3-22 11:41:02 | 显示全部楼层
https://doi.org/10.1007/978-3-662-39789-3agents are spawned from multiple different locations. A unique approach is adopted to defining external memory for genetic programming agents in which: (1) the state of memory is shared across all programs. (2) Writing is formulated as a probabilistic process, resulting in different regions of memor
发表于 2025-3-22 14:36:01 | 显示全部楼层
https://doi.org/10.1007/978-3-662-26494-2mbedded feature selection and multi-label classification, has not been explored to solve this problem. In this paper, we propose a linear GP (LGP) algorithm to search predictive models for motor fault detection and classification. Our method is able to evolve multi-label classifiers with high accura
发表于 2025-3-22 19:38:45 | 显示全部楼层
Falk Würfele,Alexander Muchowski, or to solve various problems the user only needs to change the grammar that is specified in a text human-readable format. The new method, Fast DENSER (F-DENSER), speeds up DENSER, and adds another representation-level that allows the connectivity of the layers to be evolved. The results demonstrat
发表于 2025-3-23 01:10:00 | 显示全部楼层
发表于 2025-3-23 04:02:59 | 显示全部楼层
,Perspektive Hoffnung für das Dorf,rogramming, which has not been used for design of some of these functions before, is the best at dealing with increasing number of inputs, and creates desired functions with better reliability than the commonly used methods.
发表于 2025-3-23 07:32:20 | 显示全部楼层
https://doi.org/10.1007/978-3-531-90581-5tions itself, but rather in evolving some of their components, i.e. bent functions. Finally, we present an additional parameter to evaluate the performance of evolutionary algorithms when evolving Boolean functions: the diversity of the obtained solutions.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 12:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表