找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Genetic Data Analysis for Plant and Animal Breeding; Fikret Isik,James Holland,Christian Maltecca Book 2017 Springer International Publish

[复制链接]
查看: 38740|回复: 49
发表于 2025-3-21 19:46:36 | 显示全部楼层 |阅读模式
书目名称Genetic Data Analysis for Plant and Animal Breeding
编辑Fikret Isik,James Holland,Christian Maltecca
视频video
概述Step-by-step data analysis examples for readers to learn quickly and apply in their own research.The first ‘how to‘ book on analyzing genomic data for plant and animal breeding.Fills the gap between t
图书封面Titlebook: Genetic Data Analysis for Plant and Animal Breeding;  Fikret Isik,James Holland,Christian Maltecca Book 2017 Springer International Publish
描述This book fills the gap between textbooks of quantitative genetic theory, and software manuals that provide details on analytical methods but little context or perspective on which methods may be most appropriate for a particular application. Accordingly this book is composed of two sections. The first section (Chapters 1 to 8) covers topics of classical phenotypic data analysis for prediction of breeding values in animal and plant breeding programs. In the second section (Chapters 9 to 13) we provide the concept and overall review of available tools for using DNA markers for predictions of genetic merits in breeding populations. With advances in DNA sequencing technologies, genomic data, especially single nucleotide polymorphism (SNP) markers, have become available for animal and plant breeding programs in recent years. Analysis of DNA markers for prediction of genetic merit is a relatively new and active research area. The algorithms and software to implement these algorithms are changing rapidly. This section represents state-of-the-art knowledge on the tools and technologies available for genetic analysis of plants and animals. However, readers should be aware that the methods
出版日期Book 2017
关键词Associate genetics; Genomic selection; Mixed models; Plant and animal breeding; Quantitative genetics
版次1
doihttps://doi.org/10.1007/978-3-319-55177-7
isbn_softcover978-3-319-85586-8
isbn_ebook978-3-319-55177-7
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Genetic Data Analysis for Plant and Animal Breeding影响因子(影响力)




书目名称Genetic Data Analysis for Plant and Animal Breeding影响因子(影响力)学科排名




书目名称Genetic Data Analysis for Plant and Animal Breeding网络公开度




书目名称Genetic Data Analysis for Plant and Animal Breeding网络公开度学科排名




书目名称Genetic Data Analysis for Plant and Animal Breeding被引频次




书目名称Genetic Data Analysis for Plant and Animal Breeding被引频次学科排名




书目名称Genetic Data Analysis for Plant and Animal Breeding年度引用




书目名称Genetic Data Analysis for Plant and Animal Breeding年度引用学科排名




书目名称Genetic Data Analysis for Plant and Animal Breeding读者反馈




书目名称Genetic Data Analysis for Plant and Animal Breeding读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:48:00 | 显示全部楼层
发表于 2025-3-22 03:56:31 | 显示全部楼层
Tapan K. Sengupta,Swagata Bhaumik familiar with traditional analysis of variance (ANOVA) based on ordinary least squares methods, we first will review the ANOVA and compare ANOVA to mixed models analysis to help introduce this topic. We will show that under certain conditions, results from ANOVA and mixed models analysis are largel
发表于 2025-3-22 07:31:27 | 显示全部楼层
DOGMA 2003. Report from Denmarkn particular, ASReml makes use of a notation for direct products of matrices to form some complex variance structures. The direct product notation can be applied both to the residual errors from the model (in the ‘. structure’) and to random model factors (in the ‘. structure’). In this chapter we i
发表于 2025-3-22 09:23:28 | 显示全部楼层
发表于 2025-3-22 16:52:52 | 显示全部楼层
发表于 2025-3-22 20:32:49 | 显示全部楼层
,Befehle der Befehls-Oberfläche,n plant and animal breeding programs. When traits are correlated, breeding value predictions from a multivariate model can be more accurate than univariate models. In this chapter we introduce multivariate models for two data sets: a maize inbred line multi-environment trial and pig data with pedigr
发表于 2025-3-22 23:48:15 | 显示全部楼层
发表于 2025-3-23 03:53:03 | 显示全部楼层
https://doi.org/10.1007/978-3-8349-6242-3onmental conditions to which a cultivar might be exposed. Multi-environment trials provide information about the adaptability of genotypes to specific environments or to sets of environments. The variance-covariance structures introduced in preceding chapters can be used to model genotype-by-environ
发表于 2025-3-23 09:00:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 08:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表