找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Generalized Solutions of First Order PDEs; The Dynamical Optimi Andreĭ I. Subbotin Book 1995 Springer Science+Business Media New York 1995

[复制链接]
查看: 55504|回复: 35
发表于 2025-3-21 19:02:36 | 显示全部楼层 |阅读模式
书目名称Generalized Solutions of First Order PDEs
副标题The Dynamical Optimi
编辑Andreĭ I. Subbotin
视频video
丛书名称Systems & Control: Foundations & Applications
图书封面Titlebook: Generalized Solutions of First Order PDEs; The Dynamical Optimi Andreĭ I. Subbotin Book 1995 Springer Science+Business Media New York 1995
出版日期Book 1995
关键词equation; function; mathematics; optimal control; optimization; partial differential equations
版次1
doihttps://doi.org/10.1007/978-1-4612-0847-1
isbn_softcover978-1-4612-6920-5
isbn_ebook978-1-4612-0847-1Series ISSN 2324-9749 Series E-ISSN 2324-9757
issn_series 2324-9749
copyrightSpringer Science+Business Media New York 1995
The information of publication is updating

书目名称Generalized Solutions of First Order PDEs影响因子(影响力)




书目名称Generalized Solutions of First Order PDEs影响因子(影响力)学科排名




书目名称Generalized Solutions of First Order PDEs网络公开度




书目名称Generalized Solutions of First Order PDEs网络公开度学科排名




书目名称Generalized Solutions of First Order PDEs被引频次




书目名称Generalized Solutions of First Order PDEs被引频次学科排名




书目名称Generalized Solutions of First Order PDEs年度引用




书目名称Generalized Solutions of First Order PDEs年度引用学科排名




书目名称Generalized Solutions of First Order PDEs读者反馈




书目名称Generalized Solutions of First Order PDEs读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:55:21 | 显示全部楼层
,Cauchy Problems for Hamilton—Jacobi Equations,blems can be proved. The Cauchy problem for Hamilton-Jacobi equation is examined in this chapter. Proofs of uniqueness and existence theorems are based on the property of weak invariance of minimax solutions with respect to characteristic inclusions. These inclusions are considered in the present se
发表于 2025-3-22 00:43:57 | 显示全部楼层
发表于 2025-3-22 08:35:40 | 显示全部楼层
Victor Nussenzweig,Carolyn S. Pincus next sections. It can be seen from the proofs that these theorems actually provide criteria for the stability of solutions with respect to small perturbations of the Hamiltonian and the terminal function.
发表于 2025-3-22 09:49:55 | 显示全部楼层
发表于 2025-3-22 13:33:04 | 显示全部楼层
,Cauchy Problems for Hamilton—Jacobi Equations, next sections. It can be seen from the proofs that these theorems actually provide criteria for the stability of solutions with respect to small perturbations of the Hamiltonian and the terminal function.
发表于 2025-3-22 17:19:27 | 显示全部楼层
Differential Games,esence of disturbances. As an illustration we can mention the problems of control of an aircraft landing and takeoff in the presence of the so-called windshear, when the aircraft is subjected to wind bursts. Analysis of differential games can help in elaboration of control algorithms for this and similar problems.
发表于 2025-3-23 01:17:13 | 显示全部楼层
Monoclonal Antibodies to Tumor Antigens,istic inclusions. This property can be given with the help of apparently different criteria, which are formulated in Sections 2 and 3. The equivalence of these criteria and the equivalence of minimax and viscosity solutions are proven in Section 4.
发表于 2025-3-23 02:05:49 | 显示全部楼层
发表于 2025-3-23 05:40:21 | 显示全部楼层
Antigen-Binding Receptors on Lymphocytes,The minimax solution approach can be used for studying various types of first-order PDE’s with boundary and terminal (initial) conditions. In Chapter II, results concerning Cauchy problems for Hamilton-Jacobi equations were presented. In this chapter we consider some other applications of the approach.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 19:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表