找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Generalized Multiresolution Analyses; Kathy D. Merrill Book 2018 Springer Nature Switzerland AG 2018 Generalized Multiresolution Analysis.

[复制链接]
查看: 26181|回复: 42
发表于 2025-3-21 16:37:52 | 显示全部楼层 |阅读模式
书目名称Generalized Multiresolution Analyses
编辑Kathy D. Merrill
视频video
概述Offers the first unified treatment of generalized multiresolution analyses and wavelet theory.Illustrates the author’s pioneering constructions of wavelet sets.Facilitates an abstract understanding of
丛书名称Applied and Numerical Harmonic Analysis
图书封面Titlebook: Generalized Multiresolution Analyses;  Kathy D. Merrill Book 2018 Springer Nature Switzerland AG 2018 Generalized Multiresolution Analysis.
描述This monograph presents the first unified exposition of generalized multiresolution analyses. Expanding on the author’s pioneering work in the field, these lecture notes provide the tools and framework for using GMRAs to extend results from classical wavelet analysis to a more general setting. .Beginning with the basic properties of GMRAs, the book goes on to explore the multiplicity and dimension functions of GMRA, wavelet sets, and generalized filters. The author’s constructions of wavelet sets feature prominently, with figures to illustrate their remarkably simple geometric form. The last three chapters exhibit extensions of wavelet theory and GMRAs to other settings. These include fractal spaces, wavelets with composite dilations, and abstract constructions of GMRAs beyond the usual setting of .L.2.(ℝ.n.)..This account of recent developments in wavelet theory will appeal to researchers and graduate students with an interest in multiscale analysis from a pure or applied perspective. Familiarity with harmonic analysis and operator theory will be helpful to the reader, though the only prerequisite is graduate level experience with real and functional analysis..
出版日期Book 2018
关键词Generalized Multiresolution Analysis; Wavelets; Frames; Filters; Wavelet Sets; Crystallographic groups; Fr
版次1
doihttps://doi.org/10.1007/978-3-319-99175-7
isbn_softcover978-3-319-99174-0
isbn_ebook978-3-319-99175-7Series ISSN 2296-5009 Series E-ISSN 2296-5017
issn_series 2296-5009
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

书目名称Generalized Multiresolution Analyses影响因子(影响力)




书目名称Generalized Multiresolution Analyses影响因子(影响力)学科排名




书目名称Generalized Multiresolution Analyses网络公开度




书目名称Generalized Multiresolution Analyses网络公开度学科排名




书目名称Generalized Multiresolution Analyses被引频次




书目名称Generalized Multiresolution Analyses被引频次学科排名




书目名称Generalized Multiresolution Analyses年度引用




书目名称Generalized Multiresolution Analyses年度引用学科排名




书目名称Generalized Multiresolution Analyses读者反馈




书目名称Generalized Multiresolution Analyses读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:28:05 | 显示全部楼层
发表于 2025-3-22 02:26:00 | 显示全部楼层
Wavelet Sets,nctions, as well as directly from the consistency equation and from their geometric properties. We focus on simple wavelet sets, those that are a finite union of convex sets. We include wavelet sets for all expansive integer matrix dilations in ., and also consider multiwavelet sets and Parseval wavelet sets.
发表于 2025-3-22 06:03:21 | 显示全部楼层
Generalized Filters,cal filters were defined in . in terms of Fourier transforms of these functions, and were used to build MRA’s and orthonormal wavelets with desirable properties. Generalized filters take advantage of the GMRA structure by using the unitary operator given by spectral multiplicity in place of the Fourier transform.
发表于 2025-3-22 08:51:55 | 显示全部楼层
https://doi.org/10.1007/978-3-319-99175-7Generalized Multiresolution Analysis; Wavelets; Frames; Filters; Wavelet Sets; Crystallographic groups; Fr
发表于 2025-3-22 13:06:33 | 显示全部楼层
978-3-319-99174-0Springer Nature Switzerland AG 2018
发表于 2025-3-22 18:11:35 | 显示全部楼层
发表于 2025-3-22 23:44:55 | 显示全部楼层
发表于 2025-3-23 01:41:13 | 显示全部楼层
发表于 2025-3-23 08:26:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 08:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表