找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Generalized Etale Cohomology Theories; John F. Jardine Book 1997 Birkhäuser Verlag 1997 Algebraic K-theory.Cohomology.K-theory.Thomason.al

[复制链接]
查看: 46826|回复: 35
发表于 2025-3-21 19:05:00 | 显示全部楼层 |阅读模式
书目名称Generalized Etale Cohomology Theories
编辑John F. Jardine
视频video
概述Highly original presentation.Provides new and complete proofs of important theorems.Very useful for researchers working in fields related to algebraic K-theory.Includes supplementary material:
丛书名称Modern Birkhäuser Classics
图书封面Titlebook: Generalized Etale Cohomology Theories;  John F. Jardine Book 1997 Birkhäuser Verlag 1997 Algebraic K-theory.Cohomology.K-theory.Thomason.al
描述.A generalized etale cohomology theory is a theory which is represented by a presheaf of spectra on an etale site for an algebraic variety, in analogy with the way an ordinary spectrum represents a cohomology theory for spaces. Examples include etale cohomology and etale K-theory. This book gives new and complete proofs of both Thomason‘s descent theorem for Bott periodic K-theory and the Nisnevich descent theorem. In doing so, it exposes most of the major ideas of the homotopy theory of presheaves of spectra, and generalized etale homology theories in particular. The treatment includes, for the purpose of adequately dealing with cup product structures, a development of stable homotopy theory for n-fold spectra, which is then promoted to the level of presheaves of n-fold spectra. . .This book should be of interest to all researchers working in fields related to algebraic K-theory. The techniques presented here are essentially combinatorial, and hence algebraic. An extensive background in traditional stable homotopy theory is not assumed.. .------  Reviews .(…) in developing the techniques of the subject, introduces the reader to the stable homotopy category of simplicial presheaves
出版日期Book 1997
关键词Algebraic K-theory; Cohomology; K-theory; Thomason; algebra; cohomoloy theory; homotopy theory; proof; theor
版次1
doihttps://doi.org/10.1007/978-3-0348-0066-2
isbn_softcover978-3-0348-0065-5
isbn_ebook978-3-0348-0066-2Series ISSN 2197-1803 Series E-ISSN 2197-1811
issn_series 2197-1803
copyrightBirkhäuser Verlag 1997
The information of publication is updating

书目名称Generalized Etale Cohomology Theories影响因子(影响力)




书目名称Generalized Etale Cohomology Theories影响因子(影响力)学科排名




书目名称Generalized Etale Cohomology Theories网络公开度




书目名称Generalized Etale Cohomology Theories网络公开度学科排名




书目名称Generalized Etale Cohomology Theories被引频次




书目名称Generalized Etale Cohomology Theories被引频次学科排名




书目名称Generalized Etale Cohomology Theories年度引用




书目名称Generalized Etale Cohomology Theories年度引用学科排名




书目名称Generalized Etale Cohomology Theories读者反馈




书目名称Generalized Etale Cohomology Theories读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:54:07 | 显示全部楼层
2197-1803 nd in traditional stable homotopy theory is not assumed.. .------  Reviews .(…) in developing the techniques of the subject, introduces the reader to the stable homotopy category of simplicial presheaves978-3-0348-0065-5978-3-0348-0066-2Series ISSN 2197-1803 Series E-ISSN 2197-1811
发表于 2025-3-22 03:42:18 | 显示全部楼层
发表于 2025-3-22 08:29:25 | 显示全部楼层
发表于 2025-3-22 11:04:46 | 显示全部楼层
发表于 2025-3-22 14:40:28 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-0066-2Algebraic K-theory; Cohomology; K-theory; Thomason; algebra; cohomoloy theory; homotopy theory; proof; theor
发表于 2025-3-22 19:02:15 | 显示全部楼层
发表于 2025-3-22 21:35:00 | 显示全部楼层
发表于 2025-3-23 04:49:57 | 显示全部楼层
发表于 2025-3-23 07:43:32 | 显示全部楼层
Georg Herzwurme first paragraph of Article 1 of the charter that references the need to “maintain international peace and security” by taking “effective collective measures for the prevention and removal of threats to the peace, and for the suppression of acts of aggression or other breaches of the peace.”.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 07:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表