找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Generalized Convexity; Proceedings of the I Sándor Komlósi,Tamás Rapcsák,Siegfried Schaible Conference proceedings 1994 Springer-Verlag Ber

[复制链接]
楼主: Precise
发表于 2025-3-23 10:40:52 | 显示全部楼层
发表于 2025-3-23 17:19:40 | 显示全部楼层
Design Space Exploration for MAHA Frameworkon for a constrained minimization problem. In this paper we present, in section 1, an appropriate generalization of local and global convexity, which takes into account the structure of the feasible set and thus enables us to narrow the usual gap between necessary and sufficient optimality condition
发表于 2025-3-23 19:31:49 | 显示全部楼层
Trajectory Analysis for Drivinggrangian type. In the paper we want to revisit again the problem of establishing regularity assumptions (or constraint qualifications, the difference in the terminology whether consisting in the condition involves or not the objective function) for a Lagrangian type optimality condition. We will dev
发表于 2025-3-24 02:06:54 | 显示全部楼层
The Raspberry Pi Desktop Tools,heory. As such, this paper does not contain new results but serves as a hopefully easy introduction to the most important results in duality theory for convex/quasiconvex functions on locally convex real topological vector spaces. Moreover, its connection to optimization is also discussed.
发表于 2025-3-24 05:01:46 | 显示全部楼层
发表于 2025-3-24 09:02:15 | 显示全部楼层
The Physics of Particular Qualities,Penot subdifferential. These results are combined with exact penalty function techniques to develop first order optimality conditions of the Karush-Kuhn-Tucker type for abstract cone-constrained programming problems. In addition these techniques are applied to quasidifferentiable programming problem
发表于 2025-3-24 12:40:39 | 显示全部楼层
发表于 2025-3-24 15:18:07 | 显示全部楼层
发表于 2025-3-24 21:46:51 | 显示全部楼层
Bayesian Radial Basis Function InterpolationWe introduce a new characterization of functions defined over lattices providing a necessary condition for their quasiconcavity according to the “Ordinal Concavity” approach.
发表于 2025-3-25 01:27:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-28 02:04
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表