找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: General Theory of Irregular Curves; A. D. Alexandrov,Yu. G. Reshetnyak Book 1989 Kluwer Academic Publishers 1989 convergence.differentiabl

[复制链接]
查看: 54247|回复: 45
发表于 2025-3-21 17:09:37 | 显示全部楼层 |阅读模式
书目名称General Theory of Irregular Curves
编辑A. D. Alexandrov,Yu. G. Reshetnyak
视频video
丛书名称Mathematics and its Applications
图书封面Titlebook: General Theory of Irregular Curves;  A. D. Alexandrov,Yu. G. Reshetnyak Book 1989 Kluwer Academic Publishers 1989 convergence.differentiabl
出版日期Book 1989
关键词convergence; differentiable manifold; integral; manifold; polygon
版次1
doihttps://doi.org/10.1007/978-94-009-2591-5
isbn_softcover978-94-010-7671-5
isbn_ebook978-94-009-2591-5Series ISSN 0169-6378
issn_series 0169-6378
copyrightKluwer Academic Publishers 1989
The information of publication is updating

书目名称General Theory of Irregular Curves影响因子(影响力)




书目名称General Theory of Irregular Curves影响因子(影响力)学科排名




书目名称General Theory of Irregular Curves网络公开度




书目名称General Theory of Irregular Curves网络公开度学科排名




书目名称General Theory of Irregular Curves被引频次




书目名称General Theory of Irregular Curves被引频次学科排名




书目名称General Theory of Irregular Curves年度引用




书目名称General Theory of Irregular Curves年度引用学科排名




书目名称General Theory of Irregular Curves读者反馈




书目名称General Theory of Irregular Curves读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:12:37 | 显示全部楼层
Rosa Maria Vitale,Pietro Amodeochet. Here we are going to dwell in detail on the definition of a curve with the aim of clarifying certain peculiarities that are important while discussing the theory of curves, and of presenting the definition of a curve in a more geometrical form as compared to the classical definition by M. Frec
发表于 2025-3-22 04:01:29 | 显示全部楼层
https://doi.org/10.1007/978-3-658-18708-8oints, i.e., a finite sequence of the points of ., such that . ≤ . ≤ .. Let us set .. The least upper boundary of the quantity s(.) on the set of all chains of the curve . is called a length of the curve . and is denoted as s(.). The curve . is termed rectifiable if its length is finite.
发表于 2025-3-22 08:15:18 | 显示全部楼层
,Solution of Algebraic Systems of Equations, Crofton, but it was in the papers by W. Blaschke and co-workers, published in the ‘thirties, that integral geometry was formulated as an independent branch of research. This field of geometry proved to be quite viable and is still attracting the attention of scholars. For a description of the histo
发表于 2025-3-22 09:26:57 | 显示全部楼层
发表于 2025-3-22 15:17:48 | 显示全部楼层
发表于 2025-3-22 18:53:52 | 显示全部楼层
Governing Equations of Fluid Dynamicsnce (. − 1) numbers of ., ., ... , . of the curvatures at the point of the curve. Let us set . where integration is carried out with respect to the arc length. The functions obtained in this way will be called integral curvatures of the curve. There arises a problem — to give such a definition of th
发表于 2025-3-22 21:29:58 | 显示全部楼层
Multi-Phase Models in Civil Engineering,The definition of a tangent to a curve given below is essentially the same as that given in courses of differential geometry.
发表于 2025-3-23 02:19:45 | 显示全部楼层
发表于 2025-3-23 06:01:24 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 23:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表