找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in ; Qi Lü,Xu Zhang Book 2014 The Author(

[复制链接]
楼主: 贪求
发表于 2025-3-23 12:46:23 | 显示全部楼层
Working methods: from theory into practice,In this chapter, we prove a uniqueness result for transposition solutions to the operator-valued backward stochastic evolution Eq. (1.10) and a well-posedness result for transposition solutions to this equation for the special case that both the final datum and the nonhomogeneous term are valued in the Hilbert space of Hilbert-Schmidt operators.
发表于 2025-3-23 14:48:20 | 显示全部楼层
https://doi.org/10.1007/978-3-031-17084-3In this chapter, we study the well-posedness for the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term, in the sense of relaxed transposition solution.
发表于 2025-3-23 18:24:35 | 显示全部楼层
Integration into the community,In this chapter, we derive some regularity properties for the relaxed transposition solutions to the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term. These properties will play key roles in the proof of our general Pontryagin-type stochastic maximum principle, presented in Chap. 9.
发表于 2025-3-24 01:14:30 | 显示全部楼层
Community Pest Management in PracticeThe purpose of this chapter is to show a necessary condition for stochastic optimal controls when the control domain is a convex subset of some Hilbert space.
发表于 2025-3-24 06:07:21 | 显示全部楼层
发表于 2025-3-24 08:13:52 | 显示全部楼层
Preliminaries,In this chapter, we present nine lemmas that will be used in the rest of this book. The first one is the classical Burkholder-Davis-Gundy inequality in infinite dimensions, while the rest are new technical results.
发表于 2025-3-24 13:35:21 | 显示全部楼层
发表于 2025-3-24 17:05:39 | 显示全部楼层
发表于 2025-3-24 21:48:13 | 显示全部楼层
Well-Posedness of the Operator-Valued BSEEs in the General Case,In this chapter, we study the well-posedness for the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term, in the sense of relaxed transposition solution.
发表于 2025-3-25 01:40:46 | 显示全部楼层
Some Properties of the Relaxed Transposition Solutions to the Operator-Valued BSEEs,In this chapter, we derive some regularity properties for the relaxed transposition solutions to the operator-valued backward stochastic evolution Eq. (1.10) with general final datum and nonhomogeneous term. These properties will play key roles in the proof of our general Pontryagin-type stochastic maximum principle, presented in Chap. 9.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 21:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表