找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Gene Regulatory Networks; Methods and Protocol Guido Sanguinetti,Vân Anh Huynh-Thu Book 2019 Springer Science+Business Media, LLC, part of

[复制链接]
楼主: 有灵感
发表于 2025-3-26 21:15:26 | 显示全部楼层
发表于 2025-3-27 05:09:07 | 显示全部楼层
发表于 2025-3-27 09:08:27 | 显示全部楼层
https://doi.org/10.1007/978-1-4939-8882-2Bayesian networks; Gaussian processes; data simulation; time series expression; single-cell transcriptom
发表于 2025-3-27 09:31:17 | 显示全部楼层
https://doi.org/10.1007/978-3-642-51832-4t developments in speed and accuracy have enabled whole-transcriptome causal network inference on a personal computer. Here, we demonstrate this technique with program Findr on 3000 genes from the Geuvadis dataset. Subsequent analysis reveals major hub genes in the reconstructed network.
发表于 2025-3-27 16:22:47 | 显示全部楼层
发表于 2025-3-27 18:47:32 | 显示全部楼层
发表于 2025-3-27 22:42:34 | 显示全部楼层
发表于 2025-3-28 05:00:17 | 显示全部楼层
Learning Differential Module Networks Across Multiple Experimental Conditions,module network inference, present protocols for common gene regulatory network reconstruction scenarios based on the Lemon-Tree software, and show, using human gene expression data, how the software can also be applied to learn differential module networks across multiple experimental conditions.
发表于 2025-3-28 08:10:53 | 显示全部楼层
发表于 2025-3-28 12:56:30 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 16:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表