找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Gelfand Triples and Their Hecke Algebras; Harmonic Analysis fo Tullio Ceccherini-Silberstein,Fabio Scarabotti,Fil Book 2020 Springer Nature

[复制链接]
查看: 9660|回复: 38
发表于 2025-3-21 19:33:17 | 显示全部楼层 |阅读模式
书目名称Gelfand Triples and Their Hecke Algebras
副标题Harmonic Analysis fo
编辑Tullio Ceccherini-Silberstein,Fabio Scarabotti,Fil
视频video
概述This is the first book on an essentially new subject. It will serve as a reference for future developments..The treatment is self-contained and therefore accessible to a wide audience..All arguments a
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Gelfand Triples and Their Hecke Algebras; Harmonic Analysis fo Tullio Ceccherini-Silberstein,Fabio Scarabotti,Fil Book 2020 Springer Nature
描述This monograph is the first comprehensive treatment of multiplicity-free induced representations of finite groups as a generalization of finite Gelfand pairs. Up to now, researchers have been somehow reluctant to face such a problem in a general situation, and only partial results were obtained in the one-dimensional case. Here, for the first time, new interesting and important results are proved. In particular, after developing a general theory (including the study of the associated Hecke algebras and the harmonic analysis of the corresponding spherical functions), two completely new highly nontrivial and significant examples (in the setting of linear groups over finite fields) are examined in full detail. The readership ranges from graduate students to experienced researchers in Representation Theory and Harmonic Analysis..
出版日期Book 2020
关键词Gelfand Pair; General Linear Group over a Finite Field; Hecke Algebra; Induced Representation; Spherical
版次1
doihttps://doi.org/10.1007/978-3-030-51607-9
isbn_softcover978-3-030-51606-2
isbn_ebook978-3-030-51607-9Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Gelfand Triples and Their Hecke Algebras影响因子(影响力)




书目名称Gelfand Triples and Their Hecke Algebras影响因子(影响力)学科排名




书目名称Gelfand Triples and Their Hecke Algebras网络公开度




书目名称Gelfand Triples and Their Hecke Algebras网络公开度学科排名




书目名称Gelfand Triples and Their Hecke Algebras被引频次




书目名称Gelfand Triples and Their Hecke Algebras被引频次学科排名




书目名称Gelfand Triples and Their Hecke Algebras年度引用




书目名称Gelfand Triples and Their Hecke Algebras年度引用学科排名




书目名称Gelfand Triples and Their Hecke Algebras读者反馈




书目名称Gelfand Triples and Their Hecke Algebras读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:30:00 | 显示全部楼层
发表于 2025-3-22 03:08:36 | 显示全部楼层
发表于 2025-3-22 07:14:51 | 显示全部楼层
Biomassebestimmung und -charakterisierung,ls in Chapter 13 of our monograph. We refer to the CIMPA lecture notes by Faraut (Analyse harmonique sur les paires de Guelfand et les espaces hyperboliques, CIMPA Lecture Notes, 1980) for an excellent classical reference in the case of Gelfand pairs.
发表于 2025-3-22 09:17:26 | 显示全部楼层
发表于 2025-3-22 14:13:56 | 显示全部楼层
0075-8434 and therefore accessible to a wide audience..All arguments aThis monograph is the first comprehensive treatment of multiplicity-free induced representations of finite groups as a generalization of finite Gelfand pairs. Up to now, researchers have been somehow reluctant to face such a problem in a ge
发表于 2025-3-22 17:54:57 | 显示全部楼层
发表于 2025-3-22 21:12:13 | 显示全部楼层
发表于 2025-3-23 02:11:54 | 显示全部楼层
发表于 2025-3-23 07:26:03 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 20:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表