找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva; Volume II - Astronom K. V. Sarma,K. Ramasubramanian,M. S. Sriram Boo

[复制链接]
查看: 17822|回复: 51
发表于 2025-3-21 19:18:22 | 显示全部楼层 |阅读模式
书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva
副标题Volume II - Astronom
编辑K. V. Sarma,K. Ramasubramanian,M. S. Sriram
视频video
丛书名称Culture And History Of Mathematics
图书封面Titlebook: Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva; Volume II - Astronom K. V. Sarma,K. Ramasubramanian,M. S. Sriram Boo
出版日期Book 2008
版次1
doihttps://doi.org/10.1007/978-93-86279-37-8
isbn_ebook978-93-86279-37-8
copyrightHindustan Book Agency 2008
The information of publication is updating

书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva影响因子(影响力)




书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva影响因子(影响力)学科排名




书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva网络公开度




书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva网络公开度学科排名




书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva被引频次




书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva被引频次学科排名




书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva年度引用




书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva年度引用学科排名




书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva读者反馈




书目名称Ganita-Yukti-Bhasa (Rationales Mathematical Astronomy) of Jyesthadeva读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:37:09 | 显示全部楼层
https://doi.org/10.1007/978-3-658-23264-1 . and five and divided by .. These two views are worth consideration. Then, (for the Moon), compute the . and apply the corrections of . and .. Then compute the . for the Sun. Compute and apply the correction of . for both the Sun and the Moon. Ascertain also the distance, at the required time, between the centres of the solar and lunar spheres.
发表于 2025-3-22 01:35:18 | 显示全部楼层
发表于 2025-3-22 04:36:37 | 显示全部楼层
发表于 2025-3-22 11:29:29 | 显示全部楼层
发表于 2025-3-22 16:21:15 | 显示全部楼层
Earth and Celestial Spheresr secondaries, which are used as the reference circles for describing the location of a celestial object using different co-ordinates. Finally, there is an elaborate discussion on the determination of the declination of a celestial object with latitude.
发表于 2025-3-22 20:03:08 | 显示全部楼层
发表于 2025-3-22 21:55:48 | 显示全部楼层
Computation of Planetsime period, then . where . is a constant. Given ., the radius of the planetary orbit is determined, if the time period of a planet is known. The term . refers to the number of complete revolutions made by the planet in a . consisting of 43,20,000 years. This period is also called a . and consists of four parts namely ., ., . and ..
发表于 2025-3-23 05:17:16 | 显示全部楼层
Eclipse longitudes are the same, it is the mid-eclipse. Now, we had.where, we approximate . by ., the true distance from the centre of the Earth in the denominator (essentially ignoring the higher order terms in .).
发表于 2025-3-23 05:58:25 | 显示全部楼层
Epilogueand cosine functions and also developed fast convergent approximations to them. Here, we shall discuss how the Kerala School also made equally significant discoveries in astronomy, in particular, planetary theory.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 07:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表