找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Gaussian Random Functions; M. A. Lifshits Book 1995 Springer Science+Business Media Dordrecht 1995 Gaussian distribution.Gaussian measure.

[复制链接]
楼主: 全体
发表于 2025-3-25 23:55:22 | 显示全部楼层
发表于 2025-3-26 01:38:17 | 显示全部楼层
发表于 2025-3-26 06:52:15 | 显示全部楼层
发表于 2025-3-26 11:16:26 | 显示全部楼层
发表于 2025-3-26 13:20:42 | 显示全部楼层
Autoethnography in Language Educationhave different forms (see Theorems 14.1 and 14.5), and a certain gap may exist between these bounds. In particular, this is a reason of that it is impossible to give necessary and sufficient conditions for the boundedness (or continuity) of a Gaussian random function in terms of the entropy. In the
发表于 2025-3-26 17:30:18 | 显示全部楼层
发表于 2025-3-26 21:12:18 | 显示全部楼层
Michel Arock,Gilbert Chemla,Jean-Paul Chemlaur subjects in Section 12. We established that this asymptotics had a unified fashion on the logarithmic level, and this fashion did not depend on the form of A and was controlled by constants governed by the action functional.
发表于 2025-3-27 02:01:15 | 显示全部楼层
,Schweiß- und Schweißrestspannungen,., ρ), and moreover, one can construct an indicator model for this function. The converse is obviously true: If both a Brownian function . an indicator model for this function exist, then (., ρ) may be isometrically embedded into L.. However, a more natural question is the following: Does the existe
发表于 2025-3-27 05:36:33 | 显示全部楼层
发表于 2025-3-27 09:29:30 | 显示全部楼层
Edward Blair,Kathleen Williamson ξ. If . ⊂ ℝ., the term ‘.’ (or simply .) is used instead of the term ‘random function’; if . ⊂ ℝ., . > 1, the expression ‘.’ is used. In these cases, the elements of . are interpreted as the time instants or space points, respectively. If . = ℕ, a random function ξ is called the ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 11:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表