找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Gauss Diagram Invariants for Knots and Links; Thomas Fiedler Book 2001 Springer Science+Business Media B.V. 2001 DEX.Finite.Invariant.Knot

[复制链接]
查看: 53757|回复: 36
发表于 2025-3-21 16:06:10 | 显示全部楼层 |阅读模式
书目名称Gauss Diagram Invariants for Knots and Links
编辑Thomas Fiedler
视频video
丛书名称Mathematics and Its Applications
图书封面Titlebook: Gauss Diagram Invariants for Knots and Links;  Thomas Fiedler Book 2001 Springer Science+Business Media B.V. 2001 DEX.Finite.Invariant.Knot
描述Gauss diagram invariants are isotopy invariants of oriented knots in- manifolds which are the product of a (not necessarily orientable) surface with an oriented line. The invariants are defined in a combinatorial way using knot diagrams, and they take values in free abelian groups generated by the first homology group of the surface or by the set of free homotopy classes of loops in the surface. There are three main results: 1. The construction of invariants of finite type for arbitrary knots in non­ orientable 3-manifolds. These invariants can distinguish homotopic knots with homeomorphic complements. 2. Specific invariants of degree 3 for knots in the solid torus. These invariants cannot be generalized for knots in handlebodies of higher genus, in contrast to invariants coming from the theory of skein modules. 2 3. We introduce a special class of knots called global knots, in F x lR and we construct new isotopy invariants, called T-invariants, for global knots. Some T-invariants (but not all !) are of finite type but they cannot be extracted from the generalized Kontsevich integral, which is consequently not the universal invariant of finite type for the restricted class of globa
出版日期Book 2001
关键词DEX; Finite; Invariant; Knot theory; Natural; design; diagrams; integral; modular curve; quantum invariant; to
版次1
doihttps://doi.org/10.1007/978-94-015-9785-2
isbn_softcover978-90-481-5748-8
isbn_ebook978-94-015-9785-2
copyrightSpringer Science+Business Media B.V. 2001
The information of publication is updating

书目名称Gauss Diagram Invariants for Knots and Links影响因子(影响力)




书目名称Gauss Diagram Invariants for Knots and Links影响因子(影响力)学科排名




书目名称Gauss Diagram Invariants for Knots and Links网络公开度




书目名称Gauss Diagram Invariants for Knots and Links网络公开度学科排名




书目名称Gauss Diagram Invariants for Knots and Links被引频次




书目名称Gauss Diagram Invariants for Knots and Links被引频次学科排名




书目名称Gauss Diagram Invariants for Knots and Links年度引用




书目名称Gauss Diagram Invariants for Knots and Links年度引用学科排名




书目名称Gauss Diagram Invariants for Knots and Links读者反馈




书目名称Gauss Diagram Invariants for Knots and Links读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:28:29 | 显示全部楼层
发表于 2025-3-22 02:21:17 | 显示全部楼层
发表于 2025-3-22 07:13:20 | 显示全部楼层
发表于 2025-3-22 10:27:26 | 显示全部楼层
Authority and Authorship in V.S. NaipaulLet pr: .. × ℝ → .. denote the standard projection. A . is the oriented image of a smooth embedding of .. in .. × ℝ. We call . a . if pr: . → .. is an immersion.
发表于 2025-3-22 16:14:49 | 显示全部楼层
发表于 2025-3-22 21:03:26 | 显示全部楼层
https://doi.org/10.1057/9780230282032Because quantum invariants and integer valued Vassiliev invariants were not defined in non-orientable 3-manifolds we pay special attention to our invariants in the case of non-orientable surfaces ... We have found interesting examples already with rather view crossings and calculations could be done by hand.
发表于 2025-3-22 21:48:58 | 显示全部楼层
发表于 2025-3-23 05:17:41 | 显示全部楼层
发表于 2025-3-23 07:22:40 | 显示全部楼层
The space of diagrams,Let pr: .. × ℝ → .. denote the standard projection. A . is the oriented image of a smooth embedding of .. in .. × ℝ. We call . a . if pr: . → .. is an immersion.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 04:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表