找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Gauge Theory and Symplectic Geometry; Jacques Hurtubise,François Lalonde,Gert Sabidussi Book 1997 Springer Science+Business Media Dordrech

[复制链接]
查看: 44892|回复: 39
发表于 2025-3-21 16:20:09 | 显示全部楼层 |阅读模式
书目名称Gauge Theory and Symplectic Geometry
编辑Jacques Hurtubise,François Lalonde,Gert Sabidussi
视频video
丛书名称Nato Science Series C:
图书封面Titlebook: Gauge Theory and Symplectic Geometry;  Jacques Hurtubise,François Lalonde,Gert Sabidussi Book 1997 Springer Science+Business Media Dordrech
描述Gauge theory, symplectic geometry and symplectic topology areimportant areas at the crossroads of several mathematical disciplines.The present book, with expertly written surveys of recent developmentsin these areas, includes some of the first expository material ofSeiberg-Witten theory, which has revolutionised the subjectssince its introduction in late 1994. .Topics covered include: introductions to Seiberg-Witten theory,to applications of the S-W theory to four-dimensional manifoldtopology, and to the classification of symplectic manifolds; anintroduction to the theory of pseudo-holomorphic curves and to quantumcohomology; algebraically integrable Hamiltonian systems and modulispaces; the stable topology of gauge theory, Morse-Floertheory; pseudo-convexity and its relations to symplectic geometry;generating functions; Frobenius manifolds and topological quantumfield theory.
出版日期Book 1997
关键词Mathematica; cohomology; homology; manifold; symplectic geometry; partial differential equations
版次1
doihttps://doi.org/10.1007/978-94-017-1667-3
isbn_softcover978-90-481-4830-1
isbn_ebook978-94-017-1667-3Series ISSN 1389-2185
issn_series 1389-2185
copyrightSpringer Science+Business Media Dordrecht 1997
The information of publication is updating

书目名称Gauge Theory and Symplectic Geometry影响因子(影响力)




书目名称Gauge Theory and Symplectic Geometry影响因子(影响力)学科排名




书目名称Gauge Theory and Symplectic Geometry网络公开度




书目名称Gauge Theory and Symplectic Geometry网络公开度学科排名




书目名称Gauge Theory and Symplectic Geometry被引频次




书目名称Gauge Theory and Symplectic Geometry被引频次学科排名




书目名称Gauge Theory and Symplectic Geometry年度引用




书目名称Gauge Theory and Symplectic Geometry年度引用学科排名




书目名称Gauge Theory and Symplectic Geometry读者反馈




书目名称Gauge Theory and Symplectic Geometry读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:29:34 | 显示全部楼层
Frobenius manifolds,pects which have a symplectic flavour, including Hamiltonian flows on coadjoint orbits, Poisson structures on loop spaces, and the symplectic geometry of flat connections on a punctured sphere. A major theme is to study the problem of solving the differential equations for a Frobenius manifold. Thes
发表于 2025-3-22 03:23:28 | 显示全部楼层
发表于 2025-3-22 06:08:01 | 显示全部楼层
发表于 2025-3-22 11:50:19 | 显示全部楼层
发表于 2025-3-22 16:05:49 | 显示全部楼层
发表于 2025-3-22 18:51:44 | 显示全部楼层
Investment and Australian Economic Growth,pects which have a symplectic flavour, including Hamiltonian flows on coadjoint orbits, Poisson structures on loop spaces, and the symplectic geometry of flat connections on a punctured sphere. A major theme is to study the problem of solving the differential equations for a Frobenius manifold. Thes
发表于 2025-3-22 22:49:21 | 显示全部楼层
发表于 2025-3-23 01:28:42 | 显示全部楼层
发表于 2025-3-23 07:48:01 | 显示全部楼层
https://doi.org/10.1007/978-3-031-45186-7n equations counts .-holomorphic curves in a somewhat new way. The “standard” theory concerns itself with moduli spaces of connected curves, and gives rise to Gromov-Witten invariants: see for example, McDuff—Salamon [15], Ruan—Tian [20, 21]. However, Taubes’s curves arise as zero sets of sections a
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 01:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表