找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Galois Theory, Coverings, and Riemann Surfaces; Askold Khovanskii Textbook 2013 Springer-Verlag Berlin Heidelberg 2013 Galois group.monodr

[复制链接]
楼主: GURU
发表于 2025-3-23 11:05:31 | 显示全部楼层
发表于 2025-3-23 17:49:51 | 显示全部楼层
发表于 2025-3-23 20:01:42 | 显示全部楼层
Ramified Coverings and Galois Theory, surfaces, the geometry of ramified coverings and Galois theory are not only analogous but in fact very closely related to each other. This relationship is useful in both directions. On the one hand, Galois theory and Riemann’s existence theorem allow one to describe the field of functions on a rami
发表于 2025-3-23 23:33:21 | 显示全部楼层
发表于 2025-3-24 04:14:26 | 显示全部楼层
发表于 2025-3-24 07:46:36 | 显示全部楼层
Askold KhovanskiiClassical Galois theory and classification of coverings are explained from scratch.Gentle introduction to the cutting edge of research.Written by one of the founders of topological Galois theory.Inclu
发表于 2025-3-24 12:55:14 | 显示全部楼层
,Symptomkategorien psychischer Störungen,t from the classical problem on solvability of an algebraic equation by radicals, we also consider other problems of this type, for instance, the question of solvability of an equation by radicals and by solving auxiliary equations of degree at most k. While our proof of the fundamental theorem of G
发表于 2025-3-24 15:41:24 | 显示全部楼层
Benedikt Friedrichs,Christian Knöchelbetween the fundamental theorem of Galois theory and classification of coverings over a topological space. A description of this analogy is given in the second chapter. We consider several classifications of coverings closely related to each other. At the same time, we stress a formal analogy betwee
发表于 2025-3-24 22:24:58 | 显示全部楼层
发表于 2025-3-24 23:46:34 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 09:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表