找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Galois Theory and Modular Forms; Ki-ichiro Hashimoto,Katsuya Miyake,Hiroaki Nakamur Book 2004 Kluwer Academic Publishers 2004 Abelian vari

[复制链接]
楼主: CLAST
发表于 2025-3-26 23:02:31 | 显示全部楼层
发表于 2025-3-27 01:59:11 | 显示全部楼层
发表于 2025-3-27 06:01:15 | 显示全部楼层
Q-curves with Rational ,-invariants and Jacobian Surfaces of GL,-typeete equations of curves over . whose jacobians are isogenous over an extension of . to Shimura’s abelian surfaces .. attached to normalized eigen forms., whose Fourier coefficients belong to., in all known non CM cases i.e., . 37, 65, 104, 157, 397, and 877.
发表于 2025-3-27 12:29:06 | 显示全部楼层
发表于 2025-3-27 14:42:05 | 显示全部楼层
发表于 2025-3-27 21:39:56 | 显示全部楼层
Semistable Abelian Varieties with Small Division Fieldsgen cusp form of weight 2 on a suitable group commensurable with Sp. (ℤ). The only decisive examples are related to lifts of automorphic representations of proper subgroups of Sp., for example the beautiful work of Yoshida ([Yos], [BSP]).
发表于 2025-3-28 00:18:06 | 显示全部楼层
Book 2004 academic years from 1999 to 2001 with the support of the Grant-in-Aid for Scientific Research (B) (1) No. 11440013. In September, 2001, an international conference "Galois Theory and Modular Forms" was held at Tokyo Metropolitan University after some preparatory work­ shops and symposia in previous
发表于 2025-3-28 02:17:51 | 显示全部楼层
发表于 2025-3-28 08:43:22 | 显示全部楼层
Akademische Bildung und fachliches Wissen,mann surface of genus . ≥2. If γ is a positive integer, then let .. (.) denote the space of holomorphic r-differentials on .. Each .. (.) is a finite-dimensional vector space over ℂ; we denote its dimension by ..(.). A point . is called an . if there exists a non-zero differential . ∈ .. (.) such that
发表于 2025-3-28 13:56:17 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-24 00:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表