找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Galois Theory; Joseph Rotman Textbook 1998Latest edition Springer Science+Business Media New York 1998 Galois group.Galois theory.Group th

[复制链接]
楼主: clannish
发表于 2025-3-25 07:05:04 | 显示全部楼层
发表于 2025-3-25 10:35:54 | 显示全部楼层
发表于 2025-3-25 14:53:19 | 显示全部楼层
发表于 2025-3-25 19:07:16 | 显示全部楼层
Irreducible Polynomials,Our next project is to find some criteria for irreducibility of polynomials; this is usually difficult, and it is unsolved in general.
发表于 2025-3-25 23:13:51 | 显示全部楼层
发表于 2025-3-26 02:09:20 | 显示全部楼层
发表于 2025-3-26 05:44:16 | 显示全部楼层
The Galois Group,We now set up an analogy with symmetries of polygons in the plane even though some of the algebraic analogues have not yet been defined.
发表于 2025-3-26 10:38:59 | 显示全部楼层
发表于 2025-3-26 14:56:00 | 显示全部楼层
Independence of Characters,This section introduces the important notion of a fixed field, and characters are used to compute its degree over a base field.
发表于 2025-3-26 19:24:37 | 显示全部楼层
Galois Extensions,Our discussion of Galois groups began with a . of fields, namely, an extension . / . that is a splitting field of some polynomial .(.) ∈ .[x]. We are now going to characterize those extension fields of . that are splitting fields of some polynomial in .[.].
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 18:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表