找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Galois Theory; Joseph Rotman Textbook 19901st edition Springer-Verlag New York Inc. 1990 Galois group.Galois theory.Group theory.Maxima.al

[复制链接]
楼主: 债务人
发表于 2025-3-25 03:51:20 | 显示全部楼层
发表于 2025-3-25 07:55:34 | 显示全部楼层
Prime Ideals and Maximal IdealsAn ideal . in a ring . is called . if . ≠ . and . ∈ . implies . ∈ . or . ∈
发表于 2025-3-25 11:39:29 | 显示全部楼层
Finite FieldsThe . of a field . is the intersection of all the subfields of
发表于 2025-3-25 17:04:02 | 显示全部楼层
Irreducible PolynomialsOur next project is to find some criteria that a polynomial be irreducible; this is usually difficult, and it is unsolved in general.
发表于 2025-3-25 20:21:08 | 显示全部楼层
发表于 2025-3-26 01:05:39 | 显示全部楼层
Splitting FieldsWe have already observed that if F is a subfield of ., then . may be viewed as a vector space over
发表于 2025-3-26 07:55:46 | 显示全部楼层
发表于 2025-3-26 09:28:38 | 显示全部楼层
The Galois GroupThe next lemma, though very easy to prove, is fundamental.
发表于 2025-3-26 16:40:48 | 显示全部楼层
Primitive Roots of UnityThe hypothesis in Theorem 40 that . contain certain roots of unity can be dropped, but we give a preliminary discussion from group theory before proving this.
发表于 2025-3-26 18:29:45 | 显示全部楼层
Insolvability of the QuinticRecall Theorem A21: If . is a group having a solvable normal subgroup . such that . is solvable, then . is solvable. Here is the improved version of Theorem 40 which needs no assumption about roots of unity.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 12:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表