找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Galois Theory; Steven H. Weintraub Textbook 20061st edition Springer-Verlag New York 2006 Galois theory.Group theory.algebra.finite field.

[复制链接]
查看: 42175|回复: 35
发表于 2025-3-21 17:45:03 | 显示全部楼层 |阅读模式
书目名称Galois Theory
编辑Steven H. Weintraub
视频video
概述Concise and clear treatment of the subject.Stresses linear algebra approach.Author is experienced writer
丛书名称Universitext
图书封面Titlebook: Galois Theory;  Steven H. Weintraub Textbook 20061st edition Springer-Verlag New York 2006 Galois theory.Group theory.algebra.finite field.
描述.Classical Galois theory is a subject generally acknowledged to be one of the most central and beautiful areas in pure mathematics. This text develops the subject systematically and from the beginning, requiring of the reader only basic facts about polynomials and a good knowledge of linear algebra.  ..Key topics and features of this book:..- Approaches Galois theory from the linear algebra point of view, following Artin..- Develops the basic concepts and theorems of Galois theory, including algebraic, normal, separable, and Galois extensions, and the Fundamental Theorem of Galois Theory..- Presents a number of applications of Galois theory, including symmetric functions, finite fields, cyclotomic fields, algebraic number fields, solvability of equations by radicals, and the impossibility of solution of the three geometric problems of Greek antiquity..- Excellent motivaton and examples throughout..The book discusses Galois theory in considerable generality, treating fields of characteristic zero and of positive characteristic with consideration of both separable and inseparable extensions, but with a particular emphasis on algebraic extensions of the field of rational numbers. Whil
出版日期Textbook 20061st edition
关键词Galois theory; Group theory; algebra; finite field; number theory
版次1
doihttps://doi.org/10.1007/0-387-28917-8
isbn_ebook978-0-387-28917-5Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag New York 2006
The information of publication is updating

书目名称Galois Theory影响因子(影响力)




书目名称Galois Theory影响因子(影响力)学科排名




书目名称Galois Theory网络公开度




书目名称Galois Theory网络公开度学科排名




书目名称Galois Theory被引频次




书目名称Galois Theory被引频次学科排名




书目名称Galois Theory年度引用




书目名称Galois Theory年度引用学科排名




书目名称Galois Theory读者反馈




书目名称Galois Theory读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:00:32 | 显示全部楼层
Pragmatism and the Value of Truth,We begin by defining the objects we will be studying.
发表于 2025-3-22 02:23:12 | 显示全部楼层
Regional Markets and Trade RoutesWe now apply our general theory to the case of symmetric functions. We let . be an arbitrary field and set .(.,⋯, .), the field of rational functions in the variables .,⋯, .. Then the symmetric group . acts on . by permuting .,⋯,
发表于 2025-3-22 05:40:38 | 显示全部楼层
Air Charter and the Warsaw ConventionIn this section we deal with a number of questions about polynomials in .[.] related to factorization and irreducibility.
发表于 2025-3-22 12:05:57 | 显示全部楼层
发表于 2025-3-22 15:18:23 | 显示全部楼层
Introduction to Galois Theory,In this section we will proceed informally, neither proving our claims nor even carefully defining our terms. Nevertheless, as you will see in the course of reading this book, everything we say here is absolutely correct. We proceed in this way to show in advance what our main goals are, and hence to motivate our development.
发表于 2025-3-22 17:53:56 | 显示全部楼层
发表于 2025-3-22 23:48:39 | 显示全部楼层
发表于 2025-3-23 01:21:46 | 显示全部楼层
Extensions of the field of Rational Numbers,In this section we deal with a number of questions about polynomials in .[.] related to factorization and irreducibility.
发表于 2025-3-23 08:19:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 01:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表