找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants; Interactions between Frank Neumann,Sibylle Schroll Conference proceed

[复制链接]
查看: 54344|回复: 48
发表于 2025-3-21 16:58:28 | 显示全部楼层 |阅读模式
书目名称Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants
副标题Interactions between
编辑Frank Neumann,Sibylle Schroll
视频video
概述Explores new connections between algebraic geometry, representation theory, group theory, number theory, and algebraic topology in connection with Galois covers, Grothendieck-Teichmüller Theory and De
丛书名称Springer Proceedings in Mathematics & Statistics
图书封面Titlebook: Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants; Interactions between Frank Neumann,Sibylle Schroll Conference proceed
描述.This book presents original peer-reviewed contributions from the London Mathematical Society (LMS) Midlands Regional Meeting and Workshop on ‘Galois Covers, Grothendieck-Teichmüller Theory and Dessinsd‘Enfants‘, which took place at the University of Leicester, UK, from 4 to 7 June, 2018. Within the theme of the workshop, the collected articles cover a broad range of topics and explore exciting new links between algebraic geometry, representation theory, group theory, number theory and algebraic topology. The book combines research and overview articles by prominent international researchers and provides a valuable resource for researchers and students alike.   .
出版日期Conference proceedings 2020
关键词Galois covers; Grothendieck-Teichmueller theory; Dessins d‘enfants; Absolute Galois group; Moduli spaces
版次1
doihttps://doi.org/10.1007/978-3-030-51795-3
isbn_softcover978-3-030-51797-7
isbn_ebook978-3-030-51795-3Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants影响因子(影响力)




书目名称Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants影响因子(影响力)学科排名




书目名称Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants网络公开度




书目名称Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants网络公开度学科排名




书目名称Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants被引频次




书目名称Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants被引频次学科排名




书目名称Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants年度引用




书目名称Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants年度引用学科排名




书目名称Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants读者反馈




书目名称Galois Covers, Grothendieck-Teichmüller Theory and Dessins d‘Enfants读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:59:03 | 显示全部楼层
https://doi.org/10.1007/978-3-319-68489-5We compute the number of rational points of classifying stacks of Chevalley group schemes using the Lefschetz–Grothendieck trace formula of Behrend for .-adic cohomology of algebraic stacks. From this we also derive associated zeta functions for these classifying stacks.
发表于 2025-3-22 04:24:06 | 显示全部楼层
https://doi.org/10.1007/978-981-10-7650-3We give a method for the computation of the plurigenera of a product-quotient manifold, and two different types of applications of it: to the construction of Calabi-Yau threefolds and to the determination of the minimal model of a product-quotient surface of general type.
发表于 2025-3-22 08:00:54 | 显示全部楼层
Sarah T. Lovell,Erik Stanek,Ronald RevordAn operation of joining coset diagrams for a given group, introduced by Higman and developed by Conder in connection with Hurwitz groups, is reinterpreted and generalised as a connected sum operation on dessins of a given type. A number of examples are given.
发表于 2025-3-22 10:04:25 | 显示全部楼层
,Galois Covers, Grothendieck-Teichmüller Theory and Dessins d’Enfants - An Introduction,In this introduction, we will give a brief overview of the themes and topics of the articles in this proceedings volume and summarise each individual contribution based on the abstracts and introduction.
发表于 2025-3-22 14:21:46 | 显示全部楼层
On the Number of Rational Points of Classifying Stacks for Chevalley Group Schemes,We compute the number of rational points of classifying stacks of Chevalley group schemes using the Lefschetz–Grothendieck trace formula of Behrend for .-adic cohomology of algebraic stacks. From this we also derive associated zeta functions for these classifying stacks.
发表于 2025-3-22 18:13:08 | 显示全部楼层
The Pluricanonical Systems of a Product-Quotient Variety,We give a method for the computation of the plurigenera of a product-quotient manifold, and two different types of applications of it: to the construction of Calabi-Yau threefolds and to the determination of the minimal model of a product-quotient surface of general type.
发表于 2025-3-23 01:13:10 | 显示全部楼层
Joining Dessins Together,An operation of joining coset diagrams for a given group, introduced by Higman and developed by Conder in connection with Hurwitz groups, is reinterpreted and generalised as a connected sum operation on dessins of a given type. A number of examples are given.
发表于 2025-3-23 02:41:22 | 显示全部楼层
发表于 2025-3-23 07:50:57 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 16:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表