找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Galois Cohomology; Jean-Pierre Serre Book 1997 Springer-Verlag Berlin Heidelberg 1997 algebra.algebraic geometry.group theory.number theor

[复制链接]
查看: 18802|回复: 35
发表于 2025-3-21 18:42:47 | 显示全部楼层 |阅读模式
书目名称Galois Cohomology
编辑Jean-Pierre Serre
视频video
概述Includes supplementary material:
丛书名称Springer Monographs in Mathematics
图书封面Titlebook: Galois Cohomology;  Jean-Pierre Serre Book 1997 Springer-Verlag Berlin Heidelberg 1997 algebra.algebraic geometry.group theory.number theor
描述This volume is an English translation of "Cohomologie Galoisienne" . The original edition (Springer LN5, 1964) was based on the notes, written with the help of Michel Raynaud, of a course I gave at the College de France in 1962-1963. In the present edition there are numerous additions and one suppression: Verdier‘s text on the duality of profinite groups. The most important addition is the photographic reproduction of R. Steinberg‘s "Regular elements of semisimple algebraic groups", Publ. Math. LH.E.S., 1965. I am very grateful to him, and to LH.E.S., for having authorized this reproduction. Other additions include: - A proof of the Golod-Shafarevich inequality (Chap. I, App. 2). - The "resume de cours" of my 1991-1992 lectures at the College de France on Galois cohomology of k(T) (Chap. II, App.). - The "resume de cours" of my 1990-1991 lectures at the College de France on Galois cohomology of semisimple groups, and its relation with abelian cohomology, especially in dimension 3 (Chap. III, App. 2). The bibliography has been extended, open questions have been updated (as far as possible) and several exercises have been added. In order to facilitate references, the numbering of pro
出版日期Book 1997
关键词algebra; algebraic geometry; group theory; number theory; algebraic group; algebraic number field; cohomol
版次1
doihttps://doi.org/10.1007/978-3-642-59141-9
isbn_softcover978-3-642-63866-4
isbn_ebook978-3-642-59141-9Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag Berlin Heidelberg 1997
The information of publication is updating

书目名称Galois Cohomology影响因子(影响力)




书目名称Galois Cohomology影响因子(影响力)学科排名




书目名称Galois Cohomology网络公开度




书目名称Galois Cohomology网络公开度学科排名




书目名称Galois Cohomology被引频次




书目名称Galois Cohomology被引频次学科排名




书目名称Galois Cohomology年度引用




书目名称Galois Cohomology年度引用学科排名




书目名称Galois Cohomology读者反馈




书目名称Galois Cohomology读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:38:42 | 显示全部楼层
发表于 2025-3-22 04:08:49 | 显示全部楼层
https://doi.org/10.1007/978-981-32-9648-0A topological group which is the projective limit of finite groups, each given the discrete topology, is called a .. Such a group is compact and totally disconnected.
发表于 2025-3-22 04:44:04 | 显示全部楼层
Giannis Karagiannis,Anastasios XepapadeasLet . be a field, and let . be a Galois extension of .. The Galois group Gal(.) of the extension . is a profinite group (cf. Chap. I, §1.1), and one can apply to it the methods and results of Chapter I; in particular, if Gal(.) acts on a discrete group ., the .(Gal(.) are well-defined (if . is not commutative, we assume that . = 0, 1).
发表于 2025-3-22 10:29:49 | 显示全部楼层
发表于 2025-3-22 13:32:49 | 显示全部楼层
发表于 2025-3-22 19:36:01 | 显示全部楼层
发表于 2025-3-22 22:39:58 | 显示全部楼层
978-3-642-63866-4Springer-Verlag Berlin Heidelberg 1997
发表于 2025-3-23 01:47:54 | 显示全部楼层
Galois Cohomology978-3-642-59141-9Series ISSN 1439-7382 Series E-ISSN 2196-9922
发表于 2025-3-23 07:44:44 | 显示全部楼层
https://doi.org/10.1007/978-3-642-59141-9algebra; algebraic geometry; group theory; number theory; algebraic group; algebraic number field; cohomol
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 00:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表