找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: G.W. Stewart; Selected Works with Misha E. Kilmer,Dianne P. O’Leary Book 2010 Springer Science+Business Media, LLC 2010 Algebra.Computer-A

[复制链接]
楼主: HAND
发表于 2025-3-23 13:27:23 | 显示全部楼层
Organisation und Geschichte des Kongresses,In this collection of papers, Pete Stewart established the foundations for the perturbation theory of invariant subspaces. He introduced two crucial concepts that allow a systematic approach toward such a perturbation theory: subspace rotation and operator separation. These two concepts form the guiding principle in most of these papers.
发表于 2025-3-23 15:51:33 | 显示全部楼层
发表于 2025-3-23 18:25:27 | 显示全部楼层
发表于 2025-3-24 01:51:20 | 显示全部楼层
50 Jahre Universitäts-Informatik in MünchenThe preceding seven chapters of this commentary had outlined some of Stewart’s important contributions to matrix algorithms and matrix perturbation theory.
发表于 2025-3-24 02:24:43 | 显示全部楼层
Publications, Honors, and StudentsDissertation: G. W. Stewart III, “Some Topics in Numerical Analysis,” University of Tennessee. Published as Technical Report ORNL-4303, Oak Ridge National Laboratory, September 1968.
发表于 2025-3-24 09:19:45 | 显示全部楼层
Introduction to the CommentariesIn research spanning over 40 years, G.W. (Pete) Stewart has made foundational contributions to numerical linear algebra.
发表于 2025-3-24 12:59:53 | 显示全部楼层
The Eigenproblem and Invariant Subspaces: Perturbation TheoryIn this collection of papers, Pete Stewart established the foundations for the perturbation theory of invariant subspaces. He introduced two crucial concepts that allow a systematic approach toward such a perturbation theory: subspace rotation and operator separation. These two concepts form the guiding principle in most of these papers.
发表于 2025-3-24 16:00:20 | 显示全部楼层
发表于 2025-3-24 21:51:57 | 显示全部楼层
Krylov Subspace Methods for the EigenproblemThese papers comprise some of Stewart’s recent contributions to the development and analysis of iterative algorithms based on Krylov subspace methods for computing eigenvalues.
发表于 2025-3-25 00:25:18 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 02:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表