找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: G.W. Leibniz, Interrelations between Mathematics and Philosophy; Norma B. Goethe,Philip Beeley,David Rabouin Book 2015 Springer Netherland

[复制链接]
楼主: 变成小松鼠
发表于 2025-3-27 00:53:47 | 显示全部楼层
Gesprächstechnik der neuen Generation though it presents a determinate topic for scientific investigation. Thus a closer look at Leibniz’s account of time presents an especially ‘pure’ version of the interaction of mathematics and philosophy in the service of progressive knowledge.
发表于 2025-3-27 02:18:47 | 显示全部楼层
发表于 2025-3-27 06:02:04 | 显示全部楼层
https://doi.org/10.1007/978-3-319-96707-3 presupposed by them. I then argue that these unities of substance make actual the parts of matter, according to Leibniz, by being the foundation of the motions that individuate the actual parts of matter from one instant to another.
发表于 2025-3-27 13:28:02 | 显示全部楼层
发表于 2025-3-27 17:21:21 | 显示全部楼层
发表于 2025-3-27 21:43:21 | 显示全部楼层
Leibniz as Reader and Second Inventor: The Cases of Barrow and Mengolid Leibniz never acknowledge any influence of these two mathematicians on his own studies? After publication of Leibniz’s manuscripts concerning the prehistory and early history of the calculus in the Academy Edition (A VII 3–6) these questions can be investigated on the solid foundation of original texts.
发表于 2025-3-28 01:30:34 | 显示全部楼层
Leibniz’s Actual Infinite in Relation to His Analysis of Matter presupposed by them. I then argue that these unities of substance make actual the parts of matter, according to Leibniz, by being the foundation of the motions that individuate the actual parts of matter from one instant to another.
发表于 2025-3-28 02:44:40 | 显示全部楼层
发表于 2025-3-28 06:29:23 | 显示全部楼层
发表于 2025-3-28 10:49:33 | 显示全部楼层
Analyticité, équipollence et théorie des courbes chez Leibnizentify curves with polygons of infinitely many, infinitely small sides. The ‛aequipolence principle’, based on the notion of quadrature, became the fundamental principle of his infinitesimal geometry and of his differential calculus, too. The third section elaborates how Leibniz‛s classification of
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 08:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表