找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Frobenius Manifolds; Quantum Cohomology a Klaus Hertling,Matilde Marcolli Book 2004 Friedr. Vieweg & Sohn Verlag/GWV Fachverlage GmbH, Wies

[复制链接]
查看: 48369|回复: 50
发表于 2025-3-21 17:02:53 | 显示全部楼层 |阅读模式
书目名称Frobenius Manifolds
副标题Quantum Cohomology a
编辑Klaus Hertling,Matilde Marcolli
视频video
概述Aktuelles aus der mathematischen Forschung
丛书名称Aspects of Mathematics
图书封面Titlebook: Frobenius Manifolds; Quantum Cohomology a Klaus Hertling,Matilde Marcolli Book 2004 Friedr. Vieweg & Sohn Verlag/GWV Fachverlage GmbH, Wies
描述Frobenius manifolds are complex manifolds with a multiplication and a metric on the holomorphic tangent bundle, which satisfy several natural conditions. This notion was defined in 1991 by Dubrovin, motivated by physics results. Another source of Frobenius manifolds is singularity theory. Duality between string theories lies behind the phenomenon of mirror symmetry. One mathematical formulation can be given in terms of the isomorphism of certain Frobenius manifolds. A third source of Frobenius manifolds is given by integrable systems, more precisely, bihamiltonian hierarchies of evolutionary PDE‘s. As in the case of quantum cohomology, here Frobenius manifolds are part of an a priori much richer structure, which, because of strong constraints, can be determined implicitly by the underlying Frobenius manifolds. Quantum cohomology, the theory of Frobenius manifolds and the relations to integrable systems are flourishing areas since the early 90‘s. An activity was organized at the Max-Planck-Institute for Mathematics in 2002, with the purpose of bringing together the main experts in these areas. This volume originates from this activity and presents the state of the art in the subject
出版日期Book 2004
关键词bihamiltonian hierarchies; complex manifolds; evolutionary PDE; integrable systems; isomorphism; manifold
版次1
doihttps://doi.org/10.1007/978-3-322-80236-1
isbn_softcover978-3-322-80238-5
isbn_ebook978-3-322-80236-1Series ISSN 0179-2156
issn_series 0179-2156
copyrightFriedr. Vieweg & Sohn Verlag/GWV Fachverlage GmbH, Wiesbaden 2004
The information of publication is updating

书目名称Frobenius Manifolds影响因子(影响力)




书目名称Frobenius Manifolds影响因子(影响力)学科排名




书目名称Frobenius Manifolds网络公开度




书目名称Frobenius Manifolds网络公开度学科排名




书目名称Frobenius Manifolds被引频次




书目名称Frobenius Manifolds被引频次学科排名




书目名称Frobenius Manifolds年度引用




书目名称Frobenius Manifolds年度引用学科排名




书目名称Frobenius Manifolds读者反馈




书目名称Frobenius Manifolds读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:19:32 | 显示全部楼层
第148471主题贴--第2楼 (沙发)
发表于 2025-3-22 04:24:25 | 显示全部楼层
板凳
发表于 2025-3-22 05:32:52 | 显示全部楼层
第4楼
发表于 2025-3-22 10:06:18 | 显示全部楼层
5楼
发表于 2025-3-22 15:58:32 | 显示全部楼层
6楼
发表于 2025-3-22 18:33:19 | 显示全部楼层
7楼
发表于 2025-3-22 21:38:33 | 显示全部楼层
8楼
发表于 2025-3-23 01:44:08 | 显示全部楼层
9楼
发表于 2025-3-23 07:22:08 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-1 18:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表