找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Families of Conformally Covariant Differential Operators, Q-Curvature and Holography; Andreas Juhl Book 2009 Birkhäuser Basel 2009 conform

[复制链接]
查看: 27147|回复: 37
发表于 2025-3-21 17:23:17 | 显示全部楼层 |阅读模式
书目名称Families of Conformally Covariant Differential Operators, Q-Curvature and Holography
编辑Andreas Juhl
视频video
概述First monograph dealing with Branson’s Q-curvature.Develops a new perspective on the subject, presents original results and suggests new research programs.Combines ideas of theoretical physics, differ
丛书名称Progress in Mathematics
图书封面Titlebook: Families of Conformally Covariant Differential Operators, Q-Curvature and Holography;  Andreas Juhl Book 2009 Birkhäuser Basel 2009 conform
描述.The central object of the book is a subtle scalar Riemannian curvature quantity in even dimensions which is called Branson’s Q-curvature. It was introduced by Thomas Branson about 15 years ago in connection with an attempt to systematise the structure of conformal anomalies of determinants of conformally covariant differential operators on Riemannian manifolds. Since then, numerous relations of Q-curvature to other subjects have been discovered, and the comprehension of its geometric significance in four dimensions was substantially enhanced through the studies of higher analogues of the Yamabe problem. ...The book attempts to reveal some of the structural properties of Q-curvature in general dimensions. This is achieved by the development of a new framework for such studies. One of the main properties of Q-curvature is that its transformation law under conformal changes of the metric is governed by a remarkable linear differential operator: a conformally covariant higher order generalization of the conformal Laplacian. In the new approach, these operators and the associated Q-curvatures are regarded as derived quantities of certain conformally covariant families of differential o
出版日期Book 2009
关键词conformally covariant operator; curvature; differential geometry; holography; hyperbolic geometry; intert
版次1
doihttps://doi.org/10.1007/978-3-7643-9900-9
isbn_ebook978-3-7643-9900-9Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightBirkhäuser Basel 2009
The information of publication is updating

书目名称Families of Conformally Covariant Differential Operators, Q-Curvature and Holography影响因子(影响力)




书目名称Families of Conformally Covariant Differential Operators, Q-Curvature and Holography影响因子(影响力)学科排名




书目名称Families of Conformally Covariant Differential Operators, Q-Curvature and Holography网络公开度




书目名称Families of Conformally Covariant Differential Operators, Q-Curvature and Holography网络公开度学科排名




书目名称Families of Conformally Covariant Differential Operators, Q-Curvature and Holography被引频次




书目名称Families of Conformally Covariant Differential Operators, Q-Curvature and Holography被引频次学科排名




书目名称Families of Conformally Covariant Differential Operators, Q-Curvature and Holography年度引用




书目名称Families of Conformally Covariant Differential Operators, Q-Curvature and Holography年度引用学科排名




书目名称Families of Conformally Covariant Differential Operators, Q-Curvature and Holography读者反馈




书目名称Families of Conformally Covariant Differential Operators, Q-Curvature and Holography读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:48:35 | 显示全部楼层
第140934主题贴--第2楼 (沙发)
发表于 2025-3-22 00:26:08 | 显示全部楼层
板凳
发表于 2025-3-22 04:57:48 | 显示全部楼层
第4楼
发表于 2025-3-22 12:41:54 | 显示全部楼层
5楼
发表于 2025-3-22 13:16:47 | 显示全部楼层
6楼
发表于 2025-3-22 19:47:49 | 显示全部楼层
7楼
发表于 2025-3-22 21:47:28 | 显示全部楼层
8楼
发表于 2025-3-23 04:39:04 | 显示全部楼层
9楼
发表于 2025-3-23 09:10:20 | 显示全部楼层
10楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-14 09:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表