找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Exploring RANDOMNESS; Gregory J. Chaitin Book 2001 Springer-Verlag London 2001 LISP.Randomness.Ringe.Turing machine.algorithms.complexity.

[复制链接]
楼主: Boldfaced
发表于 2025-3-25 06:00:20 | 显示全部楼层
发表于 2025-3-25 10:37:26 | 显示全部楼层
https://doi.org/10.1007/978-3-030-22598-8This entire chapter will be devoted to the proof of one major theorem:
发表于 2025-3-25 11:45:28 | 显示全部楼层
https://doi.org/10.1007/978-94-007-2004-6In this chapter I’ll show you that Solovay randomness is equivalent to strong Chaitin randomness. Recall that an infinite binary sequence . is strong Chaitin random iff (.(.), the complexity of its .-bit prefix .) − . goes to infinity as . increases. I’ll break the proof into two parts.
发表于 2025-3-25 19:02:45 | 显示全部楼层
https://doi.org/10.1007/978-3-540-79436-3A lot remains to be done! Hopefully this is just the beginning of AIT! The higher you go, the more mountains you can see to climb!
发表于 2025-3-25 20:09:20 | 显示全部楼层
发表于 2025-3-26 02:09:58 | 显示全部楼层
发表于 2025-3-26 05:47:05 | 显示全部楼层
A self-delimiting Turing machine considered as a set of (program, output) pairs is just one of many possible self-delimiting binary computers . Each such . can be simulated by . by adding a LISP prefix σ.
发表于 2025-3-26 08:56:15 | 显示全部楼层
The connection between program-size complexity and algorithmic probability: ,=-log,+,(1). Occam’s raThe first half of the main theorem of this chapter is trivial:.therefore
发表于 2025-3-26 13:58:21 | 显示全部楼层
发表于 2025-3-26 18:41:51 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-11 12:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表