找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Extremal Polynomials and Riemann Surfaces; Andrei Bogatyrev Book 2012 Springer-Verlag Berlin Heidelberg 2012 Pell-Abel equation.Riemann su

[复制链接]
查看: 19581|回复: 40
发表于 2025-3-21 16:41:34 | 显示全部楼层 |阅读模式
书目名称Extremal Polynomials and Riemann Surfaces
编辑Andrei Bogatyrev
视频video
概述Includes numerous problems and exercises which provide a deep insight in the subject and allow to conduct independent research in this topic.Contains many pictures which visualize involved theory.Desc
丛书名称Springer Monographs in Mathematics
图书封面Titlebook: Extremal Polynomials and Riemann Surfaces;  Andrei Bogatyrev Book 2012 Springer-Verlag Berlin Heidelberg 2012 Pell-Abel equation.Riemann su
描述.The problems of conditional optimization of the uniform (or C-) norm for polynomials and rational functions arise in various branches of science and technology. Their numerical solution is notoriously difficult in case of high degree functions. The book develops the classical Chebyshev‘s approach which gives analytical representation for the solution in terms of Riemann surfaces. The techniques born in the remote (at the first glance) branches of mathematics such as complex analysis, Riemann surfaces and Teichmüller theory, foliations, braids, topology are applied to  approximation problems.  .The key feature of this book is the usage of beautiful ideas of contemporary mathematics for the solution of applied problems and their effective numerical realization. This is one of the few books  where the computational aspects of the higher genus Riemann surfaces are illuminated. Effective work with the moduli spaces of algebraic curves provides wide opportunities for numerical experiments in mathematics and theoretical physics.​.
出版日期Book 2012
关键词Pell-Abel equation; Riemann surface; Schottky model; extremal polynomials; least deviation problems
版次1
doihttps://doi.org/10.1007/978-3-642-25634-9
isbn_softcover978-3-642-44332-9
isbn_ebook978-3-642-25634-9Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

书目名称Extremal Polynomials and Riemann Surfaces影响因子(影响力)




书目名称Extremal Polynomials and Riemann Surfaces影响因子(影响力)学科排名




书目名称Extremal Polynomials and Riemann Surfaces网络公开度




书目名称Extremal Polynomials and Riemann Surfaces网络公开度学科排名




书目名称Extremal Polynomials and Riemann Surfaces被引频次




书目名称Extremal Polynomials and Riemann Surfaces被引频次学科排名




书目名称Extremal Polynomials and Riemann Surfaces年度引用




书目名称Extremal Polynomials and Riemann Surfaces年度引用学科排名




书目名称Extremal Polynomials and Riemann Surfaces读者反馈




书目名称Extremal Polynomials and Riemann Surfaces读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:21:26 | 显示全部楼层
发表于 2025-3-22 00:59:20 | 显示全部楼层
Rusni Hassan,Nurul ’Iffah M. A. Zaabae as functions of a point . in the moduli space. In this chapter we develop a combinatorial geometric approach to the investigation of the period map. To curves . in the moduli space we shall assign in a one-to-one fashion trees . of a special form with edges labelled by positive numbers.
发表于 2025-3-22 07:54:59 | 显示全部楼层
Wilhelm Schmeisser,Sebastian Bertram. Our analysis of the optimization Problem B in Chap. 1 enables us to figure out the characteristic features of the solution. We know that the optimal stability polynomial has many alternance points, so its extremality parameter . is not large.
发表于 2025-3-22 11:35:08 | 显示全部楼层
发表于 2025-3-22 14:16:58 | 显示全部楼层
Representations for the Moduli Space,f real hyperelliptic curves. For a fixed genus . this space consists of several components, which are distinguished by another topological invariant of a real curve, the number . of (co)real ovals on it.
发表于 2025-3-22 20:55:33 | 显示全部楼层
发表于 2025-3-22 22:10:25 | 显示全部楼层
发表于 2025-3-23 03:42:39 | 显示全部楼层
978-3-642-44332-9Springer-Verlag Berlin Heidelberg 2012
发表于 2025-3-23 09:22:35 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 06:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表