找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Extended Abstracts February 2016; Positivity and Valua Maria Alberich-Carramiñana,Carlos Galindo,Joaquim Conference proceedings 2018 Sprin

[复制链接]
楼主: 使无罪
发表于 2025-3-26 21:19:01 | 显示全部楼层
发表于 2025-3-27 02:53:12 | 显示全部楼层
https://doi.org/10.1007/b105173We explore the notion of local numerical equivalence in higher dimension and its relationship with Newton–Okounkov bodies with respect to flags centered at a given point.
发表于 2025-3-27 05:55:24 | 显示全部楼层
发表于 2025-3-27 10:58:15 | 显示全部楼层
,Newton–Okounkov Bodies of Exceptional Curve Plane Valuations Non-positive at Infinity,In this note we announce a result determining the Newton–Okounkov bodies of the line bundle . with respect to ..
发表于 2025-3-27 14:52:23 | 显示全部楼层
发表于 2025-3-27 19:04:45 | 显示全部楼层
发表于 2025-3-27 22:59:31 | 显示全部楼层
发表于 2025-3-28 04:11:45 | 显示全部楼层
,Notes on Divisors Computing MLD’s and LCT’s,This note discusses results presented at the 2016 meeting “Workshop on Positivity and Valuations” at Centre de Recerca Matemàtica. Much of the content discussed below appears in Blum (On divisors computing mld’s and lct’s, 2016, [.]) with further details.
发表于 2025-3-28 08:23:42 | 显示全部楼层
The Universal Zeta Function for Curve Singularities and its Relation with Global Zeta Functions,The purpose of this note is to give a brief overview on zeta functions of curve singularities and to provide some evidences on how these and global zeta functions associated to singular algebraic curves over perfect fields relate to each other.
发表于 2025-3-28 13:31:53 | 显示全部楼层
Algebraic Volumes of Divisors,We prove the following result: for every totally real Galois number field . there exists a smooth projective variety . and a divisor . on . such that . is a primitive element of ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 18:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表