找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Extended Abstracts 2021/2022; Methusalem Lectures Duván Cardona,Joel Restrepo,Michael Ruzhansky Conference proceedings 2024 The Editor(s) (

[复制链接]
楼主: 减轻
发表于 2025-3-30 11:47:19 | 显示全部楼层
Extended Abstracts 2021/2022978-3-031-48579-4Series ISSN 2297-0215 Series E-ISSN 2297-024X
发表于 2025-3-30 14:00:00 | 显示全部楼层
发表于 2025-3-30 17:09:04 | 显示全部楼层
发表于 2025-3-30 22:59:42 | 显示全部楼层
Laplace-Beltrami Equation on Lipschitz Hypersurfaces in the Generic Bessel Potential Spacesined and singularities of solutions at nodes to the mentioned BVPs are indicated. In contrast to the results on the same BVPs in the classical Bessel potential spaces ., the Fredholm property in the GBPS . with weight is independent of the smoothness parameter . and Fredholm conditions as well as si
发表于 2025-3-31 02:28:14 | 显示全部楼层
Conference proceedings 2024l connected branches arising in this regard are shown..2.       Geometric analysis. The volume presents studies of modern techniques for elliptic and subelliptic PDEs that in recent times have been used to establish new results in differential geometry and differential topology. These topics involve
发表于 2025-3-31 08:17:07 | 显示全部楼层
https://doi.org/10.1007/978-3-319-41015-9 we apply the variational formulation and the calculus of Günter’s tangential differential operators on a hypersurface and layers. This approach allow global representation of basic differential operators and of corresponding BVPs in terms of the standard cartesian coordinates of the ambient Euclidean space ..
发表于 2025-3-31 12:32:35 | 显示全部楼层
发表于 2025-3-31 13:29:19 | 显示全部楼层
Endpoint Sobolev Inequalities for Vector Fields and Cancelling Operatorsberg), the deformation operator (Korn–Sobolev inequality by M.J. Strauss) and the Hodge complex (Bourgain and Brezis). Their proof is based on the fact that . lies in the kernel of a cocancelling differential operator.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 11:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表