找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Extended Abstracts 2021/2022; Methusalem Lectures Duván Cardona,Joel Restrepo,Michael Ruzhansky Conference proceedings 2024 The Editor(s) (

[复制链接]
楼主: 减轻
发表于 2025-3-28 15:23:24 | 显示全部楼层
Ondřej Císař,Manès Weisskircherngular values, we obtain a two-radius theorem for integrals over sub-Riemannian geodesics. We also state intertwining properties of distinguished differential operators. We conclude with a description of ongoing work.
发表于 2025-3-28 19:56:00 | 显示全部楼层
Julia Novak,Caitríona Ní Dhúillfor the eigenvalues of the Laplacians with Neumann and Dirichlet boundary conditions on bounded, simply connected planar domains. This principle can be used to provide simple proofs of some previously known results on the hot spots conjecture.
发表于 2025-3-29 02:09:18 | 显示全部楼层
发表于 2025-3-29 04:12:46 | 显示全部楼层
发表于 2025-3-29 09:04:37 | 显示全部楼层
https://doi.org/10.1007/978-3-319-41015-9ns in .-limit when the thickness of the layer converges to zero. It is shown how the mixed type boundary value problem (BVP) for the bi-Laplace equation in the initial thin layer transforms in the .-limit into an appropriate Dirichlet BVP for the bi-Laplace-Beltrami equation on the surface. For this
发表于 2025-3-29 13:10:12 | 显示全部楼层
发表于 2025-3-29 18:27:27 | 显示全部楼层
Imagining Ireland‘s Future, 1870-1914aled Dirichlet energies, and use it to study the renormalized solution—the Almgren’s blowup. However, such monotonicity formulas require strong smoothness assumptions on domains and operators. We are interested in the cases when monotonicity formulas are not available, including variable coefficient
发表于 2025-3-29 23:26:36 | 显示全部楼层
发表于 2025-3-30 02:44:08 | 显示全部楼层
convergence of Vilenkin-Fourier series of . for . in case the Vilenkin system is bounded. Moreover, we state an analogy of the Kolmogorov theorem for . and construct a function . such that the partial sums with respect to Vilenkin systems diverge everywhere.
发表于 2025-3-30 06:15:04 | 显示全部楼层
978-3-031-48581-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-1 11:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表