找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Existence Theory for Nonlinear Ordinary Differential Equations; Donal O’Regan Book 1997 Springer Science+Business Media Dordrecht 1997 Bou

[复制链接]
楼主: osteomalacia
发表于 2025-3-28 17:34:28 | 显示全部楼层
Frost, Drought, and Heat Resistance,blems on the semi-infinite interval. We also remark here that the general theory of nonlinear boundary value problems on the semi-infinite is not very well developed. Most of the results in the literature require rather technical hypothesis and apply only to narrowly defined classes of problems.
发表于 2025-3-28 22:50:03 | 显示全部楼层
发表于 2025-3-29 01:57:51 | 显示全部楼层
发表于 2025-3-29 04:45:28 | 显示全部楼层
发表于 2025-3-29 09:21:52 | 显示全部楼层
发表于 2025-3-29 11:54:49 | 显示全部楼层
Impulsive differential equations,impulsive differential equations. In this chapter we present some of the more advanced results to date in the existence theory of nonlinear first order impulsive differential equations with variable times. Let . be a positive integer and . ∈ (0, ∞]. In section 15.3 we establish existence results for the impulsive differential equation (IDE),
发表于 2025-3-29 19:22:50 | 显示全部楼层
Book 1997latively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y‘. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de­ fined either locally or globa
发表于 2025-3-29 22:51:58 | 显示全部楼层
发表于 2025-3-30 03:41:54 | 显示全部楼层
发表于 2025-3-30 05:33:59 | 显示全部楼层
blem is relatively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y‘. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de­ fined either locall
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 23:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表